Mathematics

Advanced GCE A2 7890-2

Mark Schemes for the Units

June 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This report on the Examination provides information on the performance of candidates which it is hoped will be useful to teachers in their preparation of candidates for future examinations. It is intended to be constructive and informative and to promote better understanding of the syllabus content, of the operation of the scheme of assessment and of the application of assessment criteria.

Reports should be read in conjunction with the published question papers and mark schemes for the Examination.

OCR will not enter into any discussion or correspondence in connection with this Report.
© OCR 2008
Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890)

 Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/ContentPage
4721 Core Mathematics 1 1
4722 Core Mathematics 2 6
4723 Core Mathematics 3 10
4724 Core Mathematics 4 13
4725 Further Pure Mathematics 1 17
4726 Further Pure Mathematics 2 21
4727 Further Pure Mathematics 3 24
4728 Mechanics 1 31
4729 Mechanics 2 33
4730 Mechanics 3 35
4731 Mechanics 4 38
4732 Probability \& Statistics 1 42
4733 Probability \& Statistics 2 46
4734 Probability \& Statistics 3 487
4735 Statistics 4 510
4736 Decision Mathematics 1 543
4737 Decision Mathematics 2 598
Grade Thresholds 643

4721 Core Mathematics 1

5
M1 Attempt to differentiate
$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{-\frac{1}{2}}+1$
$=4\left(\frac{1}{\sqrt{9}}\right)+1$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{7}{3}$
A1 $\frac{7}{3}$ only
5

6 (i) $(x-5)(x+2)(x+5)$
$=\left(x^{2}-3 x-10\right)(x+5)$
$=x^{3}+2 x^{2}-25 x-50$
B1 $\quad x^{2}-3 x-10$ or $x^{2}+7 x+10$ or $x^{2}-25$
seen
M1 Attempt to multiply a quadratic by a linear factor
A1
3
(ii)

B1 + ve cubic with 3 roots (not 3 line segments)
B1 $\sqrt{ }(0,-50)$ labelled or indicated on y-axis
B1 $(-5,0),(-2,0),(5,0)$ labelled or indicated on x-axis and no other x - intercepts

9 (i) $\begin{aligned} & (x-2)^{2}+(y-1)^{2}=100 \\ & x^{2}+y^{2}-4 x-2 y-95=0 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \hline 3 \end{aligned}$	$\begin{aligned} & (x-2)^{2} \text { and }(y-1)^{2} \text { seen } \\ & (x \pm 2)^{2}+(y \pm 1)^{2}=100 \end{aligned}$ correct form
$\text { (ii) } \begin{aligned} & (5-2)^{2}+(k-1)^{2}=100 \\ & (k-1)^{2}=91 \quad \text { or } k^{2}-2 k-90=0 \\ & k=1+\sqrt{91} \end{aligned}$	$\begin{array}{r}\text { M1 } \\ \text { A1 } \\ \\ \text { A1 } \\ \hline 3 \\ \hline\end{array}$	$x=5$ substituted into their equation correct, simplified quadratic in k (or y) obtained cao
$\text { (iii) } \begin{aligned} & \text { distance from }(-3,9) \text { to }(2,1) \\ &=\sqrt{(2--3)^{2}+(1-9)^{2}} \\ &=\sqrt{25+64} \\ &=\sqrt{89} \\ & \sqrt{89}<10 \text { so point is inside } \end{aligned}$	$\begin{array}{r}\text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \\ \hline 3\end{array}$	Uses $\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$ compares their distance with 10 and makes consistent conclusion
$\text { (iv) } \begin{aligned} & \text { gradient of radius }=\frac{9-1}{8-2} \\ &=\frac{4}{3} \\ & \text { gradient of tangent }=-\frac{3}{4} \\ & y-9=-\frac{3}{4}(x-8) \\ & y-9=-\frac{3}{4} x+6 \\ & y=-\frac{3}{4} x+15 \end{aligned}$	$\begin{array}{r}\text { M1 } \\ \text { A1 } \\ \text { B1 } \sqrt{1} \\ \text { M1 } \\ \\ \\ \hline\end{array}$	uses $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ oe oe correct equation of straight line through $(8,9)$, any non-zero gradient oe 3 term equation

$$
\begin{array}{ll}
10 \text { (i) } & 2\left(x^{2}-3 x\right)+11 \\
= & 2\left[\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}\right]+11 \\
= & 2\left(x-\frac{3}{2}\right)^{2}+\frac{13}{2}
\end{array}
$$

$$
\text { B1 } \quad p=2
$$

$$
\text { B1 } \quad q=-\frac{3}{2}
$$

$$
\text { M1 } \quad r=11-2 q^{2} \text { or } \frac{11}{2}-q^{2}
$$

A1 $r=\frac{13}{2}$

4

(ii) $\left(\frac{3}{2}, \frac{13}{2}\right)$

B1V

B1 $\sqrt{ }$
2
-1

(iii) $\begin{aligned} & 36-4 \times 2 \times 11 \\ & =-52\end{aligned}$

M1 uses $b^{2}-4 a c$
A1

(iv) 0 real roots

B1 cao
(v) $2 x^{2}-6 x+11=14-7 x$

$$
\begin{aligned}
& 2 x^{2}+x-3=0 \\
& (2 x+3)(x-1)=0 \\
& x=-\frac{3}{2}, x=1 \\
& y=\frac{49}{2}, y=7
\end{aligned}
$$

M1* substitute for x / y or attempt to get an equation in 1 variable only
A1 obtain correct 3 term quadratic
M1dep correct method to solve 3 term quadratic
A1
A1
SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1

4722 Core Mathematics 2

1
$(2-3 x)^{6}=2^{6}+6 \cdot 2^{5} \cdot(-3 x)+15 \cdot 2^{4} \cdot(-3 x)^{2}$
)3x

$$
=64-576 x+2160 x^{2}
$$

OR
M1 Attempt (at least) first two terms - product of binomial coefficient and powers of 2 and (-

A1 Obtain $64-576 x$
M1 Attempt third term - binomial coefficient and powers of 2 and (-) $3 x$
A1 Obtain $2160 x^{2}$
M1 Attempt expansion involving all 6 brackets
A1 Obtain 64
A1 Obtain - $576 x$
A1 Obtain $2160 x^{2}$
SR if the expansion is attempted in descending order, and the required terms are never seen, then B1 B1 B1 for $4860 x^{4},-2916 x^{5}, 729 x^{6}$

4

4723 Core Mathematics 3

4724 Core Mathematics 4

1 (a) $2 x^{2}-7 x-4=(2 x+1)(x-4)$ or

$$
3 x^{2}+x-2=(3 x-2)(x+1)
$$

B1
$\frac{2 x+1}{3 x-2}$ as final answer; this answer only
B1 Do not ISW

		2	
	For correct leading term x in quotient	B1 I	Identity method
	For evidence of correct division process	M1 M	M1: $x^{3}+2 x^{2}-6 x-5=Q\left(x^{2}+4 x+1\right)+R$
	Quotient $=x-2$	A1 M	M1: $Q=a x+b$ or $x+b, R=c x+d \& \geq 2$ ops
			[N.B. If $Q=x+b$, this $\Rightarrow 1$ of the 2 ops]
	Remainder $=x-3$	A1 A	A2: $a=1, b=-2, c=1, d=-3 \mathrm{SR}$ 부1 for two
		4	
2	Parts with correct split of $u=\ln x, \frac{\mathrm{~d} v}{\mathrm{~d} x}=x^{4}$	* M1 ob	obtaining result $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$
	$\frac{x^{5}}{5} \ln x-\int \frac{x^{5}}{5} \cdot \frac{1}{x}(\mathrm{~d} x)$	A1	
	$\frac{x^{5}}{5} \ln x-\frac{x^{5}}{25}$	A1	
	Correct method with the limits	dep*M1	1 Decimals acceptable here
	$\frac{4 \mathrm{e}^{5}}{25}+\frac{1}{25}$ ISW \quad (Not ' $+\mathrm{c}^{\prime}$)	A1 A	Accept equiv fracts; like terms amalgamated

3 (i) $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2} y\right)=x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y$ or $\frac{\mathrm{d}}{\mathrm{d} x}\left(x y^{2}\right)=2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2}$
Attempt to solve their differentiated equation for $\frac{\mathrm{d} y}{\mathrm{~d} x} \quad \operatorname{dep} * \mathbf{M} 1$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}-2 x y}{x^{2}-2 x y}$ only A1 WWW AG Must have intermediate line \&... :..could imply " $=0$ " on $1^{\text {st }}$ line

(ii)(a)Attempt to solve only $y^{2}-2 x y=0 \&$ derive $y=2 x$	B1	AG Any effort at solving $x^{2}-2 x y=0 \rightarrow$ B0
Clear indication why $y=0$ is not acceptable	B1	Substituting $y=2 x \rightarrow \mathrm{~B} 0, \mathrm{~B} 0$

4 (i) For (either point) $+t$ (difference between vectors) M1 ' t ' can be ' s ', ' λ ' etc.
$\mathbf{r}=(3 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ or $\mathbf{i}+3 \mathbf{j}+4 \mathbf{k})+t(-2 \mathbf{i}+\mathbf{j}+\mathbf{k}$ or $2 \mathbf{i}-\mathbf{j}-\mathbf{k}) \mathbf{A 1} \quad$ ' \mathbf{r} ' must be ' \mathbf{r} ' but need not be bold
Check other formats, e.g. $t a+(1-t) b$
(ii) State/imply that their \mathbf{r}
and their $-2 \mathbf{i}+\mathbf{j}+\mathbf{k}$ are perpendicular
Consider scalar product $=0$
Obtain $t=-\frac{1}{6}$ or $\frac{1}{6}$ or $-\frac{5}{6}$ or $\frac{5}{6}$
Subst their t into their equation of $A B$
Obtain $\frac{1}{6}(16 \mathbf{i}+13 \mathbf{j}+19 \mathbf{k}) \quad$ AEF
*M1 N.B.This *M1 is dep on M1 being earned in (i) dep*M1

A1
M1
A1 Accept decimals if clear
5

5 (i) $(1-x)^{\frac{1}{2}}=1-\frac{1}{2} x-\frac{1}{8} x^{2}$ ignoring x^{3} etc
$(1+x)^{-\frac{1}{2}}=1-\frac{1}{2} x+\frac{3}{8} x^{2}$ ignoring x^{3} etc
Product $=1-x+\frac{1}{2} x^{2}$ ignoring x^{3} etc

B2 SR Allow B1 for $1-\frac{1}{2} x+k x^{2}, k \neq-\frac{1}{8}$ or 0
B2 SR Allow B1 for $1-\frac{1}{2} x+k x^{2}, k \neq \frac{3}{8}$ or 0
B1 AG; with (at least) 1 intermediate step (cf x^{2})

5
(ii) $\sqrt{\frac{5}{9}}$ or $\frac{\sqrt{5}}{3}$ seen

B1
$\frac{37}{49}$ or $1-\frac{2}{7}+\frac{1}{2}\left(\frac{2}{7}\right)^{2}$ seen
B1
$\frac{\sqrt{5}}{3} \approx \frac{37}{49} \Rightarrow \sqrt{5} \approx \frac{111}{49}$
B1 AG

6 (i) Produce at least 2 of the 3 relevant equations in t and s
Solve for t and s
$(t, s)=(4,-3)$ AEF
M1
*A1

Subst $(4,-3)$ into suitable equation(s) \& show consistency dep*A1 Either into " 3 rd" eqn or into all 3 coordinates.
N.B. Intersection coords not asked for

4
*M1 Expect $\sqrt{29}$ and $\sqrt{21}$
*M1 Expect - 18
dep*M1 Should be $-\frac{18}{\sqrt{29} \sqrt{21}}$
A1 2.39 (2.388236..) or $0.753(0.75335 \ldots)$ rads 4

7 (i) Correct (calc) method for dealing with $\frac{1}{\sin x}$ or $(\sin x)^{-1} \quad$ M1

Obtain $-\frac{\cos x}{\sin ^{2} x}$ or $-(\sin x)^{-2} \cos x$
Show manipulation to $-\operatorname{cosec} x \cot x$ (or vice-versa)
(ii) Separate variables, $\int(-) \frac{1}{\sin x \tan x} \mathrm{~d} x=\int \cot t \mathrm{~d} t$ Style: For the M1 to be awarded, $\mathrm{d} x$ and $\mathrm{d} t$ must appear on correct sides or there must be \int sign on both sides

Subst $(t, x)=\left(\frac{1}{2} \pi, \frac{1}{6} \pi\right)$ into their equation containing ' c '
$\operatorname{cosec} x=\ln \sin t+2$ or $\ln |\sin t|+2$

8 (i) $A(t+1)+B=2 t$
$A=2$
$B=-2$

A1

A1 WWW AG with ≥ 1 line intermed working 3
M1 or $\int \frac{1}{\sin x \tan x} \mathrm{~d} x=\int(-) \cot t \mathrm{~d} t$
$\int-\operatorname{cosec} x \cot x \mathrm{~d} x=\operatorname{cosec} x \quad(+\mathrm{c})$
$\int \cot t \mathrm{~d} t=\ln \sin t$ or $\ln |\sin t| \quad \quad(+\mathrm{c})$
A1 or $\int \operatorname{cosec} x \cot x \mathrm{~d} x=-\operatorname{cosec} x$
B1 or $\int-\cot t \mathrm{~d} t=-\ln \sin t$ or $-\ln |\sin t|$

M1 and attempt to find ' c '
A1 WWW ISW; $\operatorname{cosec} \frac{\pi}{6}$ to be changed to 2
5
M1 Beware: correct values for A and/or B can be .
A1 ... obtained from a wrong identity
A1 Alt method: subst suitable values into given... ...expressions

3

(ii) Attempt to connect $\mathrm{d} x$ and $\mathrm{d} t$

M1 But not just $\mathrm{d} x=\mathrm{d} t$. As AG, look carefully.
$\mathrm{d} x=t \mathrm{~d} t$ s.o.i. AEF
A1
$x+\sqrt{2 x-1} \rightarrow \frac{t^{2}+1}{2}+t=\frac{(t+1)^{2}}{2}$ s.o.i.
B1 Any wrong working invalidates
$\int \frac{2 t}{(t+1)^{2}} \mathrm{~d} t$
A1 AG WWW The ' $\mathrm{d} t$ ' must be present
\square
(iii) $\int \frac{1}{t+1} \mathrm{~d} t=\ln (t+1)$
$\int \frac{1}{(t+1)^{2}} \mathrm{~d} t=-\frac{1}{t+1}$
Attempt to change limits (expect $1 \& 3$) and use $\mathrm{f}(t)$
M1 or re-substitute and use 1 and 5 on $\mathrm{g}(x)$
$\ln 4-\frac{1}{2}$
A1 AEF (like terms amalgamated); if A0 A0 in (i), then final A0

9 (i) $\begin{aligned} A: \theta & =\frac{1}{2} \pi \\ B: \theta & \left(\operatorname{accept} 90^{\circ}\right) \\ B & \left(\operatorname{accept} 360^{\circ}\right)\end{aligned}$
B1
B2 SR If B0 awarded for point B, allow B1 SR for any angle s.t. $\sin \theta=0$
3
(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} \theta}}{\frac{\mathrm{~d} x}{\mathrm{~d} \theta}}$

M1 or $\frac{\mathrm{d} y}{\mathrm{~d} \theta} \cdot \frac{\mathrm{~d} \theta}{\mathrm{~d} x}$ Must be used, not just quoted

$$
\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2+2 \cos 2 \theta
$$

B1
$2+2 \cos 2 \theta=4 \cos ^{2} \theta$ with ≥ 1 line intermed work
*B1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \cos \theta}{2+2 \cos 2 \theta} \quad$ s.o.i.
$=\sec \theta$
A1 This \& previous line are interchangeable dep*A1 WWW AG 5]
(iii) Equating $\sec \theta$ to 2 and producing at least one value of θ M1 degrees or radians

$$
\begin{aligned}
& (x=)-\frac{2}{3} \pi-\frac{\sqrt{3}}{2} \\
& (y=)-2 \sqrt{3}
\end{aligned}
$$

A1 'Exact' form required
A1 'Exact' form required
3

4725 Further Pure Mathematics 1

10 (i)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \mathbf{2} \\ & \hline \end{aligned}$	Find value of $\operatorname{det} \mathbf{A B}$ Correct value 2 seen
(ii)	$(\mathbf{A B})^{-1}=\frac{1}{2}\left(\begin{array}{ccc}0 & 3 & -1 \\ 0 & -1 & 1 \\ 2 & 6-3 a & a-6\end{array}\right)$	M1	Show correct process for adjoint entries
		A1	Obtain at least 4 correct entries in adjoint
		B1	Divide by their determinant
		A1	Obtain completely correct answer
		4	
(iii) EITHER		M1	State or imply $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$ Obtain $\mathbf{B}^{-1}=(\mathbf{A B})^{-1} \times \mathbf{A}$
		M1	Correct multiplication process seen
		A1	Obtain three correct elements
$\mathbf{B}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 2 \\ -6 & 2 & -2\end{array}\right)$		A1	All elements correct
OR		5 M1	Attempt to find elements of B
		A1	All correct
		M1	Correct process for \mathbf{B}^{1}
		A1	3 elements correct
		A1	All elements correct

4726 Further Pure Mathematics 2

$1 \begin{aligned} & \text { Write as } \frac{A}{x-2 a}+\frac{B x+C}{x^{2}+a^{2}} \\ & \text { Get } 2 a x=A\left(x^{2}+a^{2}\right)+(B x+C)(x-2 a) \\ & \text { Choose values of } x \text { and/or equate coeff. } \\ & \text { Get } A=4 / 5, B=-4 / 5, C=2 / 5 a\end{aligned}$

2

M1 Accept $C=0$

A1 $\sqrt{ }$ Follow-on for $C=0$
M1 Must lead to at least one of their A, B, C
A1 For two correct from correct working only
A1 For third correct
5

B1 Get $(4,0),(3,0),(-2,0)$ only
B1 Get $(0, \sqrt{5})$ as "maximum"

B1 Meets x-axis at 90° at all crossing points
B1 Use $-2 \leq x \leq 3$ and $x \geq 4$ only
B1 Symmetry in $\mathrm{O} x$

3	Quote/derive $\mathrm{d} x=\frac{2}{1+t^{2}} \mathrm{~d} t$ Replace all x and $\mathrm{d} x$ from their expressions Tidy to $2 /\left(3 t^{2}+1\right)$ Get $k \tan ^{-1}(A t)$ Get $k=2 / 3 \sqrt{ } 3, A=\sqrt{ } 3$ Use limits correctly to $2 / 9 \sqrt{ } 3 \pi$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \sqrt{ } \text {. } \\ & \text { A1 } \\ & \hline 6 \\ & \hline \end{aligned}$	Not $\mathrm{d} x=\mathrm{d} t$; ignore limits Not $a /\left(3 t^{2}+1\right)$ Allow $A=1$ if from $p /\left(t^{2}+1\right)$ only Allow $k=a / \sqrt{ } 3$ from line 3; AEEF AEEF
4 (i)		B1	Correct $y=x^{2}$
		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \hline 3 \end{aligned}$	Correct shape/asymptote Crossing (0,1)
(ii)	Define sech $x=2 /\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$ Equate their expression to x^{2} and attempt to simplify Clearly get A.G.	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \mathbf{3} \\ & \hline \end{aligned}$	AEEF
(iii)	Cobweb Values $>$ and then $<$ root	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \hline 2 \end{aligned}$	Only from cobweb

8 (i) | Attempt to solve $r=0$ |
| :--- |
| Get $\alpha=1 / 4 \pi$ |

| (ii) (a) Get $1-\sin ((2 k+1) \pi-2 \theta)$ |
| :--- | :--- | :--- | :--- |
| Expand as sin $(A+B)$ |
| Use k as integer so $\sin (2 k+1) \pi=0$, |

And $\cos (2 k+1) \pi=-1$

4727 Further Pure Mathematics 3

1 (a)(i)	e, r^{3}, r^{6}, r^{9}	M1 A1	For stating e, r^{m} (any $m . .2$), and 2 other different elements in terms of e and r For all elements correct
(ii)	r generates G	B1	For this or any statement equivalent to: all elements of G are included in a group with e and r $O R$ order of $r>$ order of all possible proper subgroups
(b)	$m, n, p, m n, n p, p m$	$$	For any 3 orders correct For all 6 correct and no extras (Ignore 1 and $m n p$)
2	METHOD 1		
	$\begin{aligned} & {[1,3,2] \times[1,2,-1]} \\ & \mathbf{n}=k[-7,3,-1] \text { OR } 7 x-3 y+z=c(=17) \end{aligned}$	M1 A1	For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation For correct vector $O R$ LHS of equation
	$\theta=\sin ^{-1} \frac{\|[1,4,-1] \cdot[-7,3,-1]\|}{\sqrt{1^{2}+4^{2}+1^{2}} \sqrt{7^{2}+3^{2}+1^{2}}}$	M1 $\sqrt{ }$ M1* M1	For using correct vectors for line and plane f.t. from normal For using scalar product of line and plane vectors For calculating both moduli in denominator
	$\theta=\sin ^{-1} \frac{6}{\sqrt{18} \sqrt{59}}=10.6^{\circ}$	$\mathrm{A} 1 \sqrt{ }$ (*dep)	For scalar product. f.t. from their numerator
	(10.609 ... $\left.{ }^{\circ} 0.18517 \ldots\right)$	A1 7	For correct angle

METHOD 2

$$
\begin{aligned}
& {[1,3,2] \times[1,2,-1]} \\
& \mathbf{n}=k[-7,3,-1] \text { OR } 7 x-3 y+z=c \\
& 7 x-3 y+z=17 \\
& d=\frac{|21-12+2-17|}{\sqrt{7^{2}+3^{2}+1^{2}}}=\frac{6}{\sqrt{59}} \\
& \theta=\sin ^{-1} \frac{\frac{6}{\sqrt{59}}}{\sqrt{1^{2}+4^{2}+1^{2}}}=10.6^{\circ}
\end{aligned}
$$

M1
(10.609... ${ }^{\circ}, 0.18517 \ldots$...)

3 (i) $\frac{\mathrm{d} z}{\mathrm{~d} x}=1+\frac{\mathrm{d} y}{\mathrm{~d} x}$
M1 $\begin{aligned} & \text { For differentiating substitution } \\ & \text { (seen or implied) }\end{aligned}$
$\frac{\mathrm{d} z}{\mathrm{~d} x}-1=\frac{z+3}{z-1} \Rightarrow \frac{\mathrm{~d} z}{\mathrm{~d} x}=\frac{2 z+2}{z-1}=\frac{2(z+1)}{z-1}$
A1 For correct equation in z AEF
A1 3 For correct simplification to AG
(ii) $\int \frac{z-1}{z+1} \mathrm{~d} z=2 \int \mathrm{~d} x$
$\Rightarrow \int 1-\frac{2}{z+1} \mathrm{~d} z$ OR $\int 1-\frac{2}{u} \mathrm{~d} u=2 x(+c)$
B1
M1
\Rightarrow

$$
\begin{aligned}
z-2 \ln (z+1) O R \quad z+1-2 \ln (z & +1) \\
& =2 x(+c)
\end{aligned}
$$

$\Rightarrow-2 \ln (x+y+1)=x-y+c$

For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation For correct vector $O R$ LHS of equation

For

$$
4 \text { (i) } \begin{aligned}
\cos ^{5} \theta & =\left(\frac{\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}}{2}\right)^{5} \\
\cos ^{5} \theta & =\frac{1}{32}\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)^{5}
\end{aligned}
$$

B1 For $\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}$ seen or implied z may be used for $\mathrm{e}^{\mathrm{i} \theta}$ throughout
M1 For expanding $\left(e^{i \theta}+e^{-i \theta}\right)^{5}$. At least 3 terms and 2 binomial coefficients required $O R$ reasonable attempt at expansion in stages

$$
\begin{align*}
\cos ^{5} \theta= & \frac{1}{32}\left(\mathrm{e}^{5 i \theta}+\mathrm{e}^{-5 i \theta}+5\left(\mathrm{e}^{3 i \theta}+\mathrm{e}^{-3 \mathrm{i} \theta}\right)+10\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)\right) \\
& \cos ^{5} \theta=\frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta)
\end{align*}
$$

A1 For correct binomial expansion
For grouping terms and using multiple angles
5. For answer obtained correctly AG

B1 For stating correct equation of degree 5
OR $1=16 \cos ^{4} \theta$ AEF
$\Rightarrow \cos \theta=0, \quad \cos \theta= \pm \frac{1}{2} \quad \mathrm{M}$
$\Rightarrow \theta=\frac{1}{2} \pi, \frac{1}{3} \pi, \frac{2}{3} \pi$
(ii) $\cos \theta=16 \cos ^{5} \theta$

M1 For obtaining at least one of the values of $\cos \theta$ from $\cos \theta=k \cos ^{5} \theta$ OR from $1=k \cos ^{4} \theta$
A1 A1 for any two correct values of θ
A1 4 A1 for the 3 rd value and no more in $0, \theta, \pi$ Ignore values outside 0 , θ, π

5 (i) METHOD 1
Lines meet where

$(x=) k+2 \lambda=k+\mu$	M1	For using parametric form to find where lines meet
$(y=)-1-5 \lambda=-4-4 \mu$	A1	For at least 2 correct equations
$(z=) \quad 1-3 \lambda=-2 \mu$		
$\Rightarrow \lambda=-1, \quad \mu=-2$	M1	For attempting to solve any 2 equations
\Rightarrow	A1	For correct values of λ and μ
	B1	For attempting a check in 3rd equation OR verifying point of intersection is on both lines
$\Rightarrow(k-2,4,4)$	A1 $\mathbf{6} \quad$ For correct point of intersection (allow vector)	

SR For finding $\lambda O R \mu$ and point of intersection, but no check, award up to M1 A1 M1 A0 B0 A1

METHOD 2

$d=\frac{|[0,3,1] \cdot[2,-5,-3] \times[1,-4,-2]|}{|\mathbf{b} \times \mathbf{c}|}$
$d=c[0,3,1] \cdot[-2,1,-3]=0$
\Rightarrow lines intersect
For using $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ with appropriate vectors (division by $|\mathbf{b} \times \mathbf{c}|$ is not essential)
and showing $d=0$ correctly

Lines meet where

$(x=)(k+) 2 \lambda=(k+) \mu$	M1	For using parametric form to find where lines meet
$(y=)-1-5 \lambda=-4-4 \mu$	A1	For at least 2 correct equations
$(z=) \quad 1-3 \lambda=-2 \mu$		
	M1	For attempting to solve any 2 equations
$\Rightarrow \lambda=-1, \mu=-2$	A1	For correct value of λ OR μ
$\Rightarrow(k-2,4,4)$	A1	For correct point of intersection (allow vector)

METHOD 3

e.g. $x-k=\frac{2(y+1)}{-5}=\frac{y+4}{-4} \quad$ M1 For solving one pair of simultaneous equations
$\Rightarrow y=4$
A1 For correct value of x, y or z
$\frac{z-1}{-3}=\frac{y+1}{-5}$
M1 For solving for the third variable
$x=k-2$ OR $z=4$
A1 For correct values of 2 of x, y and z
$x-k=\frac{z}{-2}$ checks with $x=k-2, z=4$
B1 For attempting a check in 3rd equation
$\Rightarrow \quad(k-2,4,4)$
A1 For correct point of intersection (allow vector)
(ii) METHOD 1

$\mathbf{n}=[2,-5,-3] \times[1,-4,-2]$		
$\mathbf{n}=c[-2,1,-3]$	M1	For finding vector product of 2 directions
	A1	For correct normal SR Following Method 2 for (i), award M1 A1 $\sqrt{ }$ for \mathbf{n}, f.t. from their \mathbf{n}
$(1,-1,1) O R(1,-4,0) O R(-1,4,4)$	M1	For substituting a point in LHS
$\Rightarrow 2 x-y+3 z=6$	A1 $\quad 4 \quad$ For correct equation of plane AEF cartesian	

METHOD 2
$\mathbf{r}=[1,-1,1]+\lambda[2,-5,-3]+\mu[1,-4,-2]$

M1 For using vector equation of plane (OR $[1,-4,0]$ for a)

```
x = 1+2\lambda+\mu
y=-1-5\lambda-4\mu
z=1-3\lambda-2\mu
```

$\Rightarrow 2 x-y+3 z=6$

A1 For writing 3 linear equations

M1 \quad For eliminating λ and μ
A1 For correct equation of plane AEF cartesian

7 (i)	$\omega \bullet$		Polar or cartesian values of ω and ω^{2} may be used anywhere in this question		
			For showing 3 points in approximately correct positions		
			Allow ω and ω^{2} interchanged, or unlabelled		
(ii)	EITHER $1+\omega+\omega^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	For result shown by any correct method AG		
	OR $\quad \omega^{3}=1 \Rightarrow(\omega-1)\left(\omega^{2}+\omega+1\right)=0$				
	$\Rightarrow 1+\omega+\omega^{2}=0(\text { for } \omega \neq 1)$ OR sum of G.P.				
	$1+\omega+\omega^{2}=\frac{1-\omega^{3}}{1-\omega}\left(=\frac{0}{1-\omega}\right)=0$				
	OR shown on Argand diagram or explained in terms of vectors		Reference to vectors in part (i) diagram may be made		
	OR				
	$1+\operatorname{cis} \frac{2}{3} \pi+\operatorname{cis} \frac{4}{3} \pi=1+\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)+\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} \mathrm{i}\right)=0$				
(iii) (a)	$(2+\omega)\left(2+\omega^{2}\right)=4+2\left(\omega+\omega^{2}\right)+\omega^{3}$ $=4-2+1=3$	M1	For using $1+\omega+\omega^{2}=0 O R$ values of ω, ω^{2} For correct answer		
	$=4-2+1=3$	A1			
(b)	$\frac{1}{2+\omega}+\frac{1}{2+\omega^{2}}=\frac{2+\left(\omega+\omega^{2}\right)+2}{3}=1$	M1	For combining fractions $O R$ multiplying top and bottom of 2 fractions by complex conjugates For correct answer f.t. from (a)		
		Alv 2			
(iv)	For the cubic $x^{3}+p x^{2}+q x+r=0$ METHOD 1				
	$\sum \alpha=2+1=3(\Rightarrow p=-3)$	M1	For calculating two of $\sum \alpha, \sum \alpha \beta, \alpha \beta \gamma$		
	$\sum \alpha \beta=\frac{2}{2+\omega}+\frac{2}{2+\omega^{2}}+\frac{1}{3}=\frac{7}{3}(=q)$	M1	For calculating all of $\sum \alpha, \sum \alpha \beta, \alpha \beta \gamma$ $O R$ all of p, q, r		
	$\alpha \beta \gamma=\frac{2}{3}\left(\Rightarrow r=-\frac{2}{3}\right)$	A1	For at least two of $\sum \alpha, \sum \alpha \beta, \alpha \beta \gamma$ correct (or values of p, q, r)		
	$\Rightarrow 3 x^{3}-9 x^{2}+7 x-2=0$	A1	For correct equation CAO		
	METHOD 2				
	$(x-2)\left(x-\frac{1}{2+\omega}\right)\left(x-\frac{1}{2+\omega^{2}}\right)=0$				
	$x^{3}+\left(-2-\frac{1}{2+\omega}-\frac{1}{2+\omega^{2}}\right) x^{2}$	M1	For multiplying out LHS in terms of ω or cis $\frac{1}{3} k \pi$		
	$+\left(\frac{1}{(2+\omega)\left(2+\omega^{2}\right)}+\frac{2}{2+\omega}+\frac{2}{2+\omega^{2}}\right) x$				
	$-\frac{2}{(2+\omega)\left(2+\omega^{2}\right)}=0$	M1	For simplifying, using parts (ii), (iii) or values of ω		
	$\Rightarrow \quad x^{3}-3 x^{2}+\frac{7}{3} x-\frac{2}{3}=0$	A1	For at least two of p, q, r correct		
	$\Rightarrow 3 x^{3}-9 x^{2}+7 x-2=0$	A1	For correct equation CAO		
		11			

4728 Mechanics 1

1(i)	$900 \mathrm{a}=600-240$		M1	N2L with difference of 2 forces, accept 360
	$\mathrm{a}=0.4 \mathrm{~ms}^{-2}$	AG	A1	
(ii)	$9=5+0.4 \mathrm{t}$	$[2]$		
	$\mathrm{t}=10 \mathrm{~s}$	M1	$\mathrm{v}=\mathrm{u}+0.4 \mathrm{t}$ or $\mathrm{v}=\mathrm{u}+(\mathrm{cv} 0.4) \mathrm{t}$	
	$9^{2}=5^{2}+2 \mathrm{x} 0.4 \mathrm{~s}$	A1		
	$\mathrm{s}=70 \mathrm{~m}$	M1	or $\mathrm{s}=(\mathrm{u}+\mathrm{v}) \mathrm{t} / 2$ or $\mathrm{s}=\mathrm{ut}+0.5 \times \operatorname{cv}(0.4) \mathrm{t}^{2}$	
		A1		

2(i)	Resolves a force in 2 perp. directions	M1*	Uses vector addition or subtraction
	Uses Pythagoras $\mathrm{R}^{2}=$	D*M1	Uses cosine rule $R^{2}=$
	$(14 \sin 30)^{2}+$	A1	$14^{2}+12^{2}$ -
	$\begin{aligned} & (12+14 \cos 30)^{2} \\ & \left\{\text { or } R^{2}=(12 \sin 30)^{2}+(14+12 \cos 30)^{2}\right\} \end{aligned}$	A1	$2 \times 14 \times 12 \cos 150$
	$\mathrm{R}=25.1 \quad \mathrm{AG}$	$\begin{aligned} & \text { A1 } \\ & {[5]} \end{aligned}$	$\begin{aligned} & \text { cso (Treat } R^{2}=14^{2}+12^{2}+2 \times 14 \times 12 \cos 30 \\ & \quad \text { as correct) } \end{aligned}$
(ii)	Trig to find angle in a valid triangle $\tan B=7 / 24.1, \sin B=7 / 25.1, \cos B=24.1 / 25$.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Angle should be relevant $\sin B / 14=\sin 150 / 25.1$. Others possible.
	$\mathrm{B}=016,(0) 16.1^{\circ}$ or (0)16.2 ${ }^{\circ}$	$\begin{aligned} & \text { A1 } \\ & {[3]} \end{aligned}$	Cosine rule may give (0)16.4, award A1

3(i)	$\mathrm{a}=6 / 5$	M1	Acceleration is gradient idea, for portion of graph
	$\mathrm{a}=1.2 \mathrm{~ms}^{-2}$	A1	Accept 6/5
(ii)		[2]	
	$\mathrm{s}=(6 \times 10 / 2) \quad\{$ or $(6 \times 5 / 2)$	M1	Area under graph idea or a formula used correctly
	$\mathrm{x} 2 \mathrm{x} 4\}$	M1	Double \{Quadruple\} journey
(iii)	$\mathrm{s}=60 \mathrm{~m}$	A1	
		[3]	
		M1	$\mathrm{v}=\mathrm{u}+\mathrm{at}$ idea, t not equal to 17 (except $\mathrm{v}=1.2 \mathrm{t}-24$)
	$\mathrm{v}=-6+1.2(17-15)$	A1	$0=\mathrm{v}+\mathrm{cv}(1.2)(20-17), \mathrm{v}^{2}-2.4 \mathrm{v}-21.6=0$, etc
	$\mathrm{v}=-3.6 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { A1 } \\ & {[3]} \end{aligned}$	$\boldsymbol{S} \boldsymbol{R} \mathrm{v}=3.6$ neither A1, but give both A1 if final answer given is -3.6

4(i)	$\mathrm{F}=15 \sin 50-15 \sin 30=3.99 \mathrm{~N}$	M1	Difference of 2 horizontal components, both <15
	Left	A1	Not 4 or 4.0
(ii)		B1	Accept reference to 30 degree string
		[3]	May be given in ii if not attempted in i
	$\mathrm{R}=\mathrm{f}(30,15 \cos 50,15 \cos 30)$	M1	Equating 4 vertical forces/components
	$\mathrm{R}=30-15 \cos 50-15 \cos 30$	A1	30 g is acceptable
	$\mu=3.99 / 7.36(78)$	A1	$=7.36(78 .$.$) , treat 30 \mathrm{~g}$ as a misread
	$\mu=0.541$ or 0.542 or 0.543	M1	Using F $=\mu \mathrm{R}$, with $\operatorname{cv}(3.99)$ and $\operatorname{cv}(7.36(78 .))$.
		A1	Accept 0.54 from correct work, e.g. $4 / 7.4$

5(i)	2400x5-3600x3	B1	Award if g included
	$2400 \mathrm{v}+3600 \mathrm{v}$	B1	Award if g included
	$2400 \times 5-3600 x 3=2400 \mathrm{v}+3600 \mathrm{v}$	M1	Equating momentums (award if g included)
	$\mathrm{v}=0.2 \mathrm{~ms}^{-1}$	A1	Not given if g included or if negative.
	B	B1 $[5]$	
(ii)(a)	+/-(-2400v $+3600 \mathrm{v})$	B1	No marks in(ii) if g included
	$2400 \times 5-3600 \times 3=-2400 \mathrm{v}+3600 \mathrm{v}$	M1	Equating momentums if "after" signs differ
	$\mathrm{v}=1 \mathrm{~ms}^{-1}$	A1	Do not accept if - sign "lost"
(b)	$\mathrm{I}=2400 \times(5+/-1)$ or $3600 \times(3+/-1)$	M1	Product of either mass and velocity change
	$\mathrm{I}=14400 \mathrm{kgms}^{-1}$	A1 $[5]$	Accept -14400

6(i)	$\begin{aligned} & x=0.01 t^{4}-0.16 t^{3}+0.72 t^{2} . \\ & \mathrm{v}=\mathrm{dx} / \mathrm{dt} \end{aligned}$		M1	Uses differentiation, ignore +c
	$\mathrm{v}=0.04 t^{3}-0.48 t^{2}+1.44 t$.		A1	or $\mathrm{v}=4\left(0.01 t^{3}\right)-3\left(0.16 t^{2}\right)+2(0.72 t)$
	$\mathrm{v}(2)=1.28 \mathrm{~ms}^{-1}$	AG	A1	Evidence of evaluation needed
			[3]	
(ii)	$\mathrm{a}=\mathrm{dv} / \mathrm{dt}$		M1	Uses differentiation
	$\mathrm{a}=0.12 t^{2}-0.96 t+1.44$		A1	or $\mathrm{a}=3\left(0.04 t^{2}\right)-2(0.48 t)+1.44$
	$t^{2}-8 t+12=0$	AG	$\begin{aligned} & \text { A1 } \\ & {[3]} \end{aligned}$	Simplifies $0.12 t^{2}-0.96 t+1.44=0$, (or verifies the roots of QE make acceleration zero)
(iii)	$(\mathrm{t}-2)(\mathrm{t}-6)=0$		M1	Solves quadratic (may be done in ii if used to find $\mathrm{v}(6)$)
	$\mathrm{t}=2$		A1	Or Factorises v into 3 linear factors M1
	$\mathrm{t}=6$		A1	$v=0.04 t(t-6)^{2} \quad \mathrm{~A} 1 \quad$ Identifies $t=6 \quad \mathrm{~A} 1$
	$\mathrm{v}(6)=0 \mathrm{~ms}^{-1}$		B1	Evidence of evaluation needed
			[4]	
(iv)			B1	Starts at origin
			B1	Rises to single max, continues through single min
			B1	Minimum on t axis, non-linear graph
	Away from A		B1	
			[4]	
(v)	$\begin{aligned} & \mathrm{AB}=0.01 \times 6^{4}-0.16 \times 6^{3}+0.72 \times 6^{2} \\ & \mathrm{AB}=4.32 \mathrm{~m} \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Or integration of $v(t)$, with limits 0,6 or substitution, using $\mathrm{cv}(6)$ from iii
			A1 [2]	

4729 Mechanics 2

$\mathbf{1}$	$200 \cos 35^{\circ}$	B1	
	$200 \cos 35^{\circ} \mathrm{xd=}=5000$ $\mathrm{~d}=30.5 \mathrm{~m}$	M1	

2	$\begin{aligned} & 0.03 \mathrm{R}=1 / 2 \times 0.009\left(250^{2}-150^{2}\right) \\ & 0.03 \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~B} 1 \end{aligned}$	$\begin{aligned} & 150^{2}=250^{2}+2 \mathrm{a} \times 0.03 \\ & \mathrm{a}= \pm 2 \times 10^{6} / 3 \text { or } \pm 666,667 \end{aligned}$		
	either K.E. $\mathrm{R}=6000 \mathrm{~N}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~A} 1 / \end{aligned}$	$\begin{aligned} \mathrm{F}= & 0.009 \mathrm{a} \\ & \text { unit errors } \end{aligned}$	(M1)	4

3 (i)	$\mathrm{D}=12000 / 20$	B1	
	$12000 / 20=\mathrm{kx} 20+600 \times 9.8 \times 0.1$	M1	
	$\mathrm{k}=0.6$	A1 3	AG
(ii)	$16000 / \mathrm{v}=0.6 \mathrm{v}+600 \times 9.8 \times 0.1$	M1	
	$0.6 v^{2}+588 v-16000=0$	M1	attempt to solve quad. (3 terms)
	$\mathrm{v}=26.5 \mathrm{~m} \mathrm{~s}^{-1}$	A1 3	
(iii)	$16000 / 32-0.6 \times 32=600 \mathrm{a}$	M1	
		A1	
	$\mathrm{a}=0.801 \mathrm{~m} \mathrm{~s}^{-2}$	A1 3	0.80 or 0.8 9

7 (i)			($\mathrm{e}=2 / 3$ ((equs must be consistent)	
	$\begin{aligned} & \mathrm{u}=3 \mathrm{~m} \mathrm{~s}^{-1} \\ & 6=2 x+3 y \end{aligned}$			
	$\mathrm{e}=(\mathrm{y}-\mathrm{x}) / 3$			
	$y=2$	A1 6	AG	
(ii)	$\mathrm{v}_{\mathrm{h}}=2$	B1	or (B1) $1 / 2 m x 2^{2}$	
	$\mathrm{v}_{\mathrm{v}}{ }^{2}=2 \times 9.8 \times 4$	M1	(B1) $1 / 2 m x v^{2}$	
	$\mathrm{v}_{\mathrm{v}}=8.85 \quad(14 \sqrt{ } 10 / 5)$	A1		
			(B1) mx9.8x4	
	speed $=\left(8.85^{2}+2^{2}\right)$	M1	$\mathrm{v}=\sqrt{ }\left(2^{2}+2 \mathrm{x} 9.8 \mathrm{x} 4\right)$	
	$9.08 \mathrm{~m} \mathrm{~s}^{-1}$	A1		
	$\tan (8.85 / 2)$ 77.3° to horizontal	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 7 \end{array}$	or $\cos ^{-1}(2 / 9.08)$ 12.7° to vertical	13

4730 Mechanics 3

4 (i) $[\mathrm{mg} \sin \alpha-0.2 \mathrm{mv}=\mathrm{ma}]$ $\begin{aligned} & 5 \frac{d v}{d t}=28-v \\ & {\left[\int \frac{5}{28-v} d v=\int d t\right]} \end{aligned}$ (C) $-5 \ln (28-\mathrm{v})=\mathrm{t}$ $\begin{aligned} & \ln [(28-v) / 28]=-\mathrm{t} / 5 \\ & {\left[28-\mathrm{v}=28 \mathrm{e}^{-\mathrm{t} / 5}\right]} \end{aligned}$ $\mathrm{v}=28\left(1-\mathrm{e}^{-t / 5}\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1ft } \\ & \text { M1 } \\ & \text { A1ft } \end{aligned}$		For using Newton's second law AG For separating variables and integrating For using $\mathrm{v}=0$ when $\mathrm{t}=0$ ft for $\ln [(28-\mathrm{v}) / 28]=\mathrm{t} /$ A from $\mathrm{C}+\mathrm{Aln}(28-\mathrm{v})=\mathrm{t}$ previously For expressing v in terms of t ft for $\mathrm{v}=28\left(1-\mathrm{e}^{\mathrm{t} / \mathrm{A}}\right)$ from $\ln [(28-v) / 28]=\mathrm{t} /$ A previously
(ii) $\left[\mathrm{a}=28 \mathrm{e}^{-2} / 5\right]$ Acceleration is $0.758 \mathrm{~ms}^{-2}$	M1 A1ft	2	For using $\mathrm{a}=(28-\mathrm{v}(\mathrm{t})) / 5$ or $\mathrm{a}=$ $\mathrm{d}\left(28-28 \mathrm{e}^{-t / 5}\right) \mathrm{dt}$ and substituting $\mathrm{t}=10$. ft from incorrect v in the form $a+b e^{c t}(b \neq 0)$; Accept 5.6/e ${ }^{2}$

4731 Mechanics 4

1	By conservation of angular momentum $\begin{aligned} 1.5 \times 21+I_{G} \times 36 & =1.5 \times 28+I_{G} \times 34 \\ I_{G} & =5.25 \mathrm{~kg} \mathrm{~m}^{2} \end{aligned}$	M1 A1A1 A1	4	Give A1 for each side of the equation or $1.5(28-21)=I_{G}(36-34)$
2 (i)	Using $\omega_{1}^{2}=\omega_{0}^{2}+2 \alpha \theta, \quad 0^{2}=8^{2}+2 \alpha(2 \pi \times 16)$ $\alpha=-\frac{1}{\pi}=-0.318$ Angular deceleration is $0.318 \mathrm{rads}^{-2}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	2	$\text { Accept }-\frac{1}{\pi}$
(ii)	$\begin{aligned} \text { Using } \omega_{1}^{2}=\omega_{0}^{2}+2 \alpha \theta, \quad \omega^{2} & =8^{2}+2 \alpha(2 \pi \times 15) \\ \omega & =2 \mathrm{rads}^{-1} \end{aligned}$	M1 A1 ft		or $0^{2}=\omega^{2}+2 \alpha(2 \pi)$ ft is $\sqrt{64-60 \pi\|\alpha\|}$ or $\sqrt{4 \pi\|\alpha\|}$ Allow Al for $\omega=2$ obtained using $\theta=16$ and $\theta=15$ (or $\theta=1$)
(iii)	Using $\omega_{1}=\omega_{0}+\alpha t, \quad 0=\omega+\alpha t$ $t=2 \pi=6.28 \mathrm{~s}$	M1 A1 ft		or $2 \pi=0 t-\frac{1}{2} \alpha t^{2}$ ft is $\frac{\omega}{\|\alpha\|}$ or $\sqrt{\frac{4 \pi}{\|\alpha\|}}$ Accept 2π
3	$\begin{aligned} A= & \int_{0}^{3}\left(2 x+x^{2}\right) \mathrm{d} x \\ & =\left[x^{2}+\frac{1}{3} x^{3}\right]_{0}^{3}=18 \\ A \bar{x}= & \int_{0}^{3} x\left(2 x+x^{2}\right) \mathrm{d} x \\ & =\left[\frac{2}{3} x^{3}+\frac{1}{4} x^{4}\right]_{0}^{3}=\frac{153}{4}=38.25 \\ & \bar{x}=\frac{38.25}{18}=\frac{17}{8}=2.125 \\ A \bar{y}= & \int_{0}^{3} \frac{1}{2}\left(2 x+x^{2}\right)^{2} \mathrm{~d} x \\ = & \int_{0}^{3}\left(2 x^{2}+2 x^{3}+\frac{1}{2} x^{4}\right) \mathrm{d} x \\ = & {\left[\frac{2}{3} x^{3}+\frac{1}{2} x^{4}+\frac{1}{10} x^{5}\right]_{0}^{3}=82.8 } \\ & \bar{y}=\frac{82.8}{18}=4.6 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$		Definite integrals may be evaluated by calculator (i.e with no working shown) Integrating and evaluating (dependent on previous M1) or $\int_{0}^{15}(3-(\sqrt{y+1}-1)) y d y$ Arranging in integrable form Integrating and evaluating SR If $1 / 2$ is missing, then M0M1M1A0 can be earned for \bar{y}

4 (i)	$\begin{aligned} w^{2} & =6.3^{2}+10^{2}-2 \times 6.3 \times 10 \cos 50^{\circ} \\ w & =7.66 \mathrm{~ms}^{-1} \\ \frac{\sin \alpha}{6.3} & =\frac{\sin 50^{\circ}}{w} \\ \alpha & =39.04^{\circ} \quad\left(\beta=90.96^{\circ}\right) \end{aligned}$ Bearing is $205-\alpha=166^{\circ}$	B1 M1 A1 M1 A1	Correct velocity triangle This mark cannot be earned from work done in part (ii)
			Finding magnitude or direction
(ii)	As viewed from B $\begin{aligned} d & =2500 \sin 14.04 \\ & =607 \mathrm{~m} \end{aligned}$	B1 ft M1 A1	Diagram showing path of A as viewed from $B \quad$ May be implied Or B1 for a correct (ft) expression for d^{2} in terms of t or other complete method Accept 604.8 to 609 $S R$ If $\beta=89^{\circ}$ is used, give A 1 for 684.9 to 689.1

5 (i)	$\begin{aligned} V & =\int_{a}^{4 a} \pi(a x) \mathrm{d} x \\ & =\left[\frac{1}{2} \pi a x^{2}\right]_{a}^{4 a}=\frac{15}{2} \pi a^{3} \end{aligned}$ Hence $m=\frac{15}{2} \pi a^{3} \rho$ $\begin{aligned} I & =\sum \frac{1}{2}\left(\rho \pi y^{2} \delta x\right) y^{2}=\int \frac{1}{2} \rho \pi y^{4} \mathrm{~d} x \\ & =\int_{a}^{4 a} \frac{1}{2} \rho \pi a^{2} x^{2} \mathrm{~d} x \\ & =\left[\frac{1}{6} \rho \pi a^{2} x^{3}\right]_{a}^{4 a}=\frac{21}{2} \rho \pi a^{5} \\ & =\frac{7}{5}\left(\frac{15}{2} \pi a^{3} \rho\right) a^{2}=\frac{7}{5} m a^{2} \end{aligned}$	M1 M1 M1 M1 A1 A1 ft A1 A1 (ag)	(Omission of π is an accuracy error) For $\int y^{4} d x$ Substitute for y^{4} and correct limits
(ii)	$\begin{aligned} & \text { MI about axis, } \begin{array}{l} I_{A}=\frac{7}{5} m a^{2}+m a^{2} \\ =\frac{12}{5} m a^{2} \\ \text { Period is } 2 \pi \sqrt{\frac{I}{m g h}} \\ \quad=2 \pi \sqrt{\frac{\frac{12}{5} m a^{2}}{m g a}}=2 \pi \sqrt{\frac{12 a}{5 g}} \end{array} . \begin{array}{l} \end{array}+\frac{1}{2} \end{aligned}$	\square	Using parallel axes rule ft from any I with $h=a$
6 (i)	$\begin{aligned} I & =\frac{1}{3} m\left\{a^{2}+\left(\frac{3}{2} a\right)^{2}\right\}+m\left(\frac{1}{2} a\right)^{2} \\ & =\frac{13}{12} m a^{2}+\frac{1}{4} m a^{2}=\frac{4}{3} m a^{2} \end{aligned}$	M1 M1 A1 (ag)	MI about perp axis through centre Using parallel axes rule
(ii)	By conservation of energy $\begin{aligned} \frac{1}{2}\left(\frac{4}{3} m a^{2}\right) \omega^{2}-\frac{1}{2}\left(\frac{4}{3} m a^{2}\right) \frac{9 g}{10 a} & =m g\left(\frac{1}{2} a-\frac{1}{2} a \times \frac{3}{5}\right) \\ \frac{2}{3} m a^{2} \omega^{2}-\frac{3}{5} m g a & =\frac{1}{5} m g a \\ \omega^{2} & =\frac{6 g}{5 a} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ & \\ \text { A1 (ag) } & \\ & \\ \hline \end{array}$	Equation involving KE and PE
(iii)	$\begin{aligned} m g \cos \theta-R & =m\left(\frac{1}{2} a\right) \omega^{2} \\ m g \times \frac{3}{5}-R & =\frac{3}{5} m g \\ R & =0 \\ m g\left(\frac{1}{2} a \sin \theta\right) & =I \alpha \\ \alpha & =\frac{3 g}{10 a} \\ m g \sin \theta-S & =m\left(\frac{1}{2} a\right) \alpha \\ S & =\frac{4}{5} m g-\frac{3}{20} m g \\ & =\frac{13}{20} m g \end{aligned}$	M1 A1 A1 (ag) M1A1 A1 M1A1 A1	Acceleration $r \omega^{2}$ and three terms (one term must be R) SR $m g \cos \theta+R=m\left(\frac{1}{2} a\right) \omega^{2} \Rightarrow R=0$ earns M1A0A1 Applying $L=I \alpha$ Acceleration $r \alpha$ and three terms (one term must be S) or $S\left(\frac{1}{2} a\right)=I_{G} \alpha=\frac{13}{12} m a^{2} \alpha$

7 (i)	$\begin{aligned} U= & 3 m g x+2 m g(3 a-x) \\ & +\frac{m g}{2 a}(x-a)^{2}+\frac{2 m g}{2 a}(2 a-x)^{2} \\ = & \frac{m g}{2 a}\left(3 x^{2}-8 a x+21 a^{2}\right) \\ \frac{\mathrm{d} U}{\mathrm{~d} x}= & 3 m g-2 m g+\frac{m g}{a}(x-a)-\frac{2 m g}{a}(2 a-x) \\ = & \frac{3 m g x}{a}-4 m g \end{aligned}$ When $x=\frac{4}{3} a, \frac{\mathrm{~d} U}{\mathrm{~d} x}=4 m g-4 m g=0$ so this is a position of equilibrium $\begin{aligned} \frac{\mathrm{d}^{2} U}{\mathrm{~d} x^{2}} & =\frac{3 m g}{a} \\ & >0, \text { so equilibrium is stable } \end{aligned}$	$\begin{aligned} & \text { B1B1 } \\ & \text { B1B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \\ & \text { A1 (ag) } \\ & \text { M1 } \\ & \text { A1 (ag) } \end{aligned}$	Can be awarded for terms listed separately Obtaining $\frac{\mathrm{d} U}{\mathrm{~d} x}$ (or any multiple of this)
(ii)	KE is $\frac{1}{2}(3 m) v^{2}+\frac{1}{2}(2 m) v^{2}$ Energy equation is $U+\frac{5}{2} m v^{2}=$ constant Differentiating with respect to t $\left\{\begin{aligned} \left(\frac{3 m g x}{a}-4 m g\right) \frac{\mathrm{d} x}{\mathrm{~d} t}+5 m v \frac{\mathrm{~d} v}{\mathrm{~d} t} & =0 \\ \frac{3 g x}{a}-4 g+5 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} & =0 \\ \text { Putting } x=\frac{4}{3} a+y, \quad \frac{3 g y}{a}+5 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}} & =0 \\ \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}} & =-\frac{3 g}{5 a} y \end{aligned}\right.$ Hence motion is SHM with period $2 \pi \sqrt{\frac{5 a}{3 g}}$	M 1 A 1 M 1 A 1 ft A 1 ft M 1 A 1 ft A1 (ag) A1 9	Differentiating the energy equation (with respect to t or x) Condone \ddot{x} instead of \ddot{y} Award M1 even if KE is missing Must have $\ddot{y}=-\omega^{2} y$ or other satisfactory explanation

4732 Probability \& Statistics 1

Note: "(3 sfs)" means "answer which rounds to... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding Penalise over-rounding only once in paper.

1(i)	(a) -1 (b) 0	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	```allow \(\approx-1\) or close to -1 not "strong corr'n", not -0.99 allow \(\approx 0\) or close to 0 not "no corr'n"```
(ii)		M1 A1 M1 M1 A1 5	Ranks attempted, even if opp $\begin{aligned} & \text { Dep M1 } \quad \text { or } S_{x y}=23--^{100} / 4 \text { or } S_{x x}=S_{y y}=30--^{100 / 4} \\ & \text { Dep 2 }{ }^{\text {nd }} \text { M1 } \quad S_{x y} / /\left(S_{x x} S_{y y}\right) \end{aligned}$
Total		7	
2(i)	$\begin{aligned} & { }^{-7} \underline{C}_{2} X^{\frac{8}{5}}{ }^{\frac{8}{C}} \underline{C}_{5} \\ & \\ & ={ }^{56} / 143 \text { or }{ }^{1176} / 3003 \text { or } 0.392(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	${ }^{7} \mathrm{C}_{2} \mathrm{X}^{8} \mathrm{C}_{3} \quad$ or $1176 \quad: \mathrm{M} 1$ $($ Any C or P$) /{ }^{15} \mathrm{C}_{5} \quad$: M1 $(\mathrm{dep}<1)$ or $\frac{7}{15} \times \frac{6}{14} \times \frac{8}{13} \times \frac{7}{12} \times \frac{6}{11}$ $\times{ }^{5}$ or $0.0392: \mathrm{M} 1$ ${ }^{5} \mathrm{C}_{2}$ or $\times 10 \quad: \mathrm{M} 1($ dep ≥ 4 probs mult $)$ if $2 \leftrightarrow 3$, treat as MR max M1M1
(ii)	3 ! $\times 2$! or ${ }^{3} \mathrm{P}_{3} \times{ }^{2} \mathrm{P}_{2}$ not in denom $=12$	$\begin{array}{ll} \mathrm{M} 1 \\ \text { A1 } & 2 \end{array}$	$\begin{aligned} & \text { BABAB seen: M1 } \\ & 120-12: \text { M1A0 } \\ & \text { NB }^{4!/ 2!}=12: \text { M0A0 } \end{aligned}$
Total		5	
3(i)(a)	0.9368 or 0.937	B1 1	
(b)	$\begin{aligned} & 0.7799-0.5230 \text { or }{ }^{8} \mathrm{C}_{5} \times 0.45^{3} \times 0.55^{5} \\ & =0.2569 \end{aligned} \text { or } 0.2568 \text { or } 0.257$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow $0.9368-0.7799$
(c)	0.7799 seen $-0.0885 \quad$ (not $1-0.0885)$ $=0.691(3 \mathrm{sfs})$	M1 M1 A1 3	${ }^{8} \mathrm{C}_{5} \times 0.45^{3} \times 0.55^{3}+{ }^{8} \mathrm{C}_{4} \times 0.45^{4} \times 0.55^{4}+\mathrm{C}_{3} \times 0.45^{3} \times 0.55^{3}: \mathrm{M}$ 1 term omitted or wrong or extra: M1
(ii)(a)	$\begin{aligned} & { }^{10} \mathrm{C}_{2} \times(7 / 12)^{8} \times(1 / 12)^{2} \text { seen } \\ & =0.105(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } 2 \end{aligned}$	or 0.105 seen, but not ISW for A1
(b)	$2^{31} / 72$ or ${ }^{175} / 72$ or $2.43(3 \mathrm{sfs})$	B1 1	$\mathrm{NB}^{12} / 5=2.4: \mathrm{B} 0$
Total		9	
4(i)	$\begin{aligned} & 1 / 20 \times 1 / 10 \text { or } 1 / 200 \text { or } 0.005 \\ & \times 2 \\ & =1 / 100 \text { or } 0.01 \end{aligned}$	M1 M1dep A1 3	
(ii)	$\begin{aligned} & \mathrm{E}(X)=0+50 \mathrm{x}^{1 / 10^{1}+500 \mathrm{x}^{1} / 20} \text { or } \\ & 0+0.5 \mathrm{x}^{1 / 10}+5 \mathrm{x}^{1 / 20} \quad=£ 0.30 \text { or } 3^{3} / 10 \\ & =30 \mathrm{p} \\ & \text { Charge " } 30 \mathrm{p} \text { " }+20 \mathrm{p} \quad \text { or } 0.3+0.2 \\ & =50 \mathrm{p} \quad \text { or } 0.50 \text { or } 0.5 \end{aligned}$	M1 A1 M1 A1 4	
Total		7	

5(i)	$\begin{aligned} & 12 / 22 x^{11} / 21 \\ & =2 / 2 \text { oe or } 0.286(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$	or ${ }^{12} \mathrm{C}_{2} /{ }^{22} \mathrm{C}_{2}$
(ii)	$\begin{aligned} & { }^{7} / 15 \times 6 / 14 \mathrm{x}^{8 / 13} \\ & \times 3 \text { oe }{ }^{8 / 65} \text { oe } \\ & =24 / 65 \text { or } 0.369(3 \mathrm{sfs}) \end{aligned}$	M M1 A1 3	
(iii)	$\frac{x}{45} \times \frac{x-1}{44}=\frac{1}{15} \quad$ oe $x^{2}-x-132=0 \quad \text { or } x(x-1)=132$ $\begin{aligned} & (x-12)(x+11)=0 \\ & \text { or } x=\underline{1 \pm} \frac{/\left(1^{2}-4 \times(-132)\right)}{2} \end{aligned}$ No. of $\mathrm{Ys}=12$	$\begin{array}{\|ll} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	not $\frac{x}{45} \times \frac{x}{44}=\frac{1}{15}$ or $\frac{x}{45} \times \frac{x}{45}=\frac{1}{15}$ or $\frac{x}{45} \times \frac{x-1}{45}=\frac{1}{15}$ oe ft 3-term QE for M1 condone signs interchanged allow one sign error Not $x=12$ or -11 ans 12 from less wking, eg $12 \times 11=132$ or T \& I: full mks Some incorrect methods: $\begin{array}{ll} \frac{x}{45} \times \frac{x-1}{44}=\frac{1}{15} & \text { oe } \end{array} \quad \text { M1 } \quad \begin{array}{ll} x^{2}+x=132 & \text { A0 } \\ x=11 & \text { M1A0 } \\ \begin{array}{ll} 12 \times 11=132 & \text { M1A1M1 } \\ x=12 \text { and (or "or") } & 11 \end{array} & \text { A0 } \end{array}$ NB 12 from eg 12.3 rounded, check method
Total		9	

6(i)(a)	256	B1 1	
			(i)(b) \& (ii)(abc): ISW ie if correct seen, ignore extras
(b)	Total unknown or totals poss diff or Y13 may be smaller or similar or size of pie chart may differ	B1 1	pie chart shows only proportions oe or no. of students per degree may differ not "no. of F may be less" not "Y13 may be larger"
(ii)(a)	B\&W does not show frequencies oe	B1 1	or B\&W shows spread or shows mks or M lger range
(b)	F generally higher or median higher F higher on average or F better mks FIQR is above M IQR F more compact M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent M evenly spread or F skewed	B1 $\text { B1 } 2$	1 mk about overall standard, based on median or on F's IQR being "higher" 1 mk about spread (or range or IQR) or about skewness. must be overall, not indiv mks must be comparison, not just figures Examples: not F higher mean not M have hiest and lowest mks condone $\mathrm{F}+\mathrm{ve}$ skew
(c)	Advantage: B\&W shows med or Qs or IQR or range or hiest \& lowest or key values Disadvantage: B\&W loses info’ $B \& W$ shows less info ${ }^{\prime}$ B\&W not show freqs B\&W not show mode B\&W: outlier can give false impression hist shows more info hist shows freqs or fds hist shows modal class (allow mode) hist shows distribution better can calc mean from hist	B1 B1 2	not $\mathrm{B} \& \mathrm{~W}$ shows skewness not $\mathrm{B} \& \mathrm{~W}$ shows info at a glance not $B \& W$ easier to compare data sets not B\&W shows mean not $B \& W$ shows spread not B\&W easier to calculate or easier to read not $\mathrm{B} \& \mathrm{~W}$ does not give indiv (or raw) data not $\mathrm{B} \& \mathrm{~W}$ does not show mean not hist shows freq for each mark not hist shows all the results not hist shows total allow adv of hist as disadv of B\&W
(iii)	$\begin{aligned} & 102 \times 51+26 \times 59 \\ & \div 128 \\ & =52.6(3 \mathrm{sfs}) \end{aligned}$	M1 M1dep A1 3	or $5202+1534$ or 6736
Total		10	

7(i)	$\begin{aligned} & \text { Geo stated } \\ & 0.7^{3} \times 0.3 \\ & 1029 / 10000 \text { oe or } 0.103(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	or implied by $0.7^{r} \mathrm{x} 0.3$ or $0.3^{r} \mathrm{x} 0.7$ Allow $0.7^{4} \times 0.3$
(ii)	0.7^{6} alone $=0.118(3 \mathrm{sfs})$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	$1-\left(0.3+0.3 \times 0.7+\ldots+0.3 \times 0.7^{5}\right) \quad$ not $1-0.7^{6}$
(iii)	$\begin{aligned} & 0.7^{9} \\ & 1-0.7^{9} \\ & 0.960(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	not 0.3×0.7^{9} allow $1-0.7^{10}$ or 0.972 for M1 allow 0.96 , if no incorrect wking seen $0.3+0.7 \times 0.3+\ldots+0.7^{8} \times 0.3: \mathrm{M} 2$ 1 term omitted or wrong or "correct" extra: M1
(iv)	Bin stated $\begin{aligned} & { }^{5} \mathrm{C}_{2} \times 0.7^{3} \times 0.3^{2} \text { or } 0.8369-0.5282 \\ & =0.3087 \text { or } 0.309(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	or implied by table or ${ }^{n} \mathrm{C}_{r}$ or $0.7^{3} \times 0.3^{2}$ or 0.0309
Total		11	
8(i)	$\begin{aligned} & \frac{168.6-\frac{88 \times 16.4}{8}}{\sqrt{\left(1136-\frac{88^{2}}{8}\right)\left(34.52-\frac{16.4^{2}}{8}\right)}} \\ & =-0.960(3 \mathrm{sfs}) \end{aligned}$	M2 A1 3	$\left(=\frac{-11.8}{\sqrt{168 \times 0.9}}\right)$ M1: correct subst in any correct S formula M2: correct substn in any correct r formula allow -0.96 , if no incorrect wking seen
(ii)	must refer to, or imply, external constraint on x e.g x is controlled or values of x fixed or chosen allow x is fixed	B1 1	not x is not random not x affects y not x not affected by y not x goes up same amount each time not charge affects no. of vehicles not x not being measured
(iii)	$\begin{aligned} & \frac{168.6-\frac{88 \times 16.4}{8}}{1136-\frac{88^{2}}{8}} \\ & =-0.0702(3 \mathrm{sfs}) \text { or }-{ }^{59} / 840 \text { or }-11.8 / 168 \\ & y-16.4 / 8=\text { " }-0.0702 "(x-88 / 8) \\ & y=-0.07 x+2.8 \text { or better } \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	ft their $S_{x y}$ and $S_{x x}$ incl ${ }^{168.6} / 1136$ if used in (i) or -0.07 if no incorrect wking or $a=16.4 / 8-("-0.0702 ") \times{ }^{88} / 8$ or ${ }^{2371} / 840$ oe eg $y=-{ }_{-5} / 840 x+{ }^{2371} / 840$
(iv)(a)	$\begin{aligned} & "-0.07 " \times 20+" 2.8 \\ & =1.4(2) \text { million }(2 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$	no ft
(b)	r close to -1 or corr'n is high just outside given data, so reliable	B1 $\text { B1 } 2$	or good corr'n or pts close to line but not if "close to -1 , hence unreliable" if r low in (i), ft : " r low" or "poor corr'n" etc or outside given data so unreliable not "reliable as follows trend" not "reliable as follows average" no ft from (iv)(a)
(v)	$\begin{aligned} & y \text { on } x \\ & x \text { is indep } \end{aligned}$	$\begin{array}{ll} \mathrm{B} 1 & \\ \text { B1 } & 2 \end{array}$	or x controlled or y depends on x or y not indep dep on not " x on y " r close to -1 so makes little difference: B2
Total		14	

4733 Probability \& Statistics 2

General: Conclusions to hypothesis tests must acknowledge uncertainty. Thus "time is unchanged" is A0. Similarly, "Significant evidence that time is unchanged" is also A0.

$1 \begin{gathered}1 \\ \\ \\ \\ \end{gathered}$	Biased in favour of those with strong political interest	B2	2	"Biased", "unrepresentative", "not indept" or equiv [but not "not random"] stated, with sensible reason. [SR: partial answer, B1]
	Obtain list of all pupils Allocate numbers sequentially Choose using random numbers	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$		List, can be implied; number serially or randomly, not just "number pupils" Select consistently with method of numbering, not just "select randomly" [SR: systematic: List B1, every $n^{\text {th }}$ B1, random start B1] [SR: names in a hat: B2]
$2 \quad \text { (i) }$	$\begin{aligned} & \Phi\left(\frac{24-30}{12}\right)-\Phi\left(\frac{20-30}{12}\right) \\ & =\Phi(-0.5)-\Phi(-0.833) \\ & =(1-0.6915)-(1-0.7976)=\mathbf{0 . 1 0 6 1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	Standardise one, allow $\sqrt{ } 12,12^{2}, \sqrt{ } n$ Both standardisations correct, allow cc here Correct handling of tails [0.3085-0.2024] Answer, a.r.t. 0.106 , c.a.o.
(ii)	Not symmetrical (skewed) Therefore inappropriate	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$	2	Any comment implying not symmetric Conclude "not good model" [Partial answer: B1]
3 α	$\begin{aligned} & \mathrm{H}_{0}: \mu=28 \\ & \mathrm{H}_{1}: \mu \neq 28 \\ & \sigma^{2}=37.05 \times 40 / 39 \quad[=38] \\ & z=\frac{26.44-28}{\sqrt{38 / 40}}=-1.601 \end{aligned}$ Compare -1.645 , or 0.0547 with 0.05	$\begin{aligned} & \hline \text { B2 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$		Both hypotheses correctly stated; one error, allow wrong or no letter, but not x or t or \bar{x}, B1 Multiply 37.05 or $\sqrt{ } 37.05$ by $n /(n-1)$ or $\sqrt{ }[n /(n-1)]$ Standardise with $\sqrt{ }$, allow $\sqrt{ }$ errors, cc, + Correct z, a.r.t -1.60 , or $p \in[0.0547,0.0548]$ Explicit comparison of z with -1.645 or p with 0.05
β	$\begin{aligned} & \text { Critical value } 28-z \sigma / \sqrt{ } n \quad[=26.397] \\ & z=1.645 \\ & \text { Compare } 26.44 \text { with } 26.40 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~A} 1 \sqrt{ } \mathrm{~V} \end{aligned}$		Allow " \pm ", $\sqrt{ }$ errors, cc, ignore other tail $z=1.645$ in CV expression, and compare 26.44 $\mathrm{CV}, \sqrt{ }$ on their z, rounding to 3 SF correct
	Do not reject H_{0} [can be implied] Insufficient evidence that time taken has changed.	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \sqrt{ } \end{aligned}$	8	Needs $\sqrt{ } n$, correct method \& comparison, not $\mu=26.44$ Conclusion interpreted in context, $\sqrt{ }$ on z,
4	$\begin{array}{lll} \frac{53-50}{\sigma / \sqrt{10}}<2.326 & \\ & \sigma>4.08 & \text { AG } \\ {[\text { Allow } \geq]} & \end{array}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~A} 1 \end{aligned}$	4	Standardise with 10 or $\sqrt{ } 10$ and Φ^{-1} Both sides same sign, $\sqrt{ } 10$, don't worry about $<$ 2.326 or 2.33 seen Convincingly obtain $\sigma>4.08$ to 3 SF , one other step [SR: Substitution: standardise \& substitute 4.08 M1; $0.0101 \mathrm{~A} 1 ; 4.07$ or 4.075 tried, M1; full justification A11
	$\begin{aligned} & \begin{array}{l} \mathrm{P}(\text { Type I })=0.01 \text { used, e.g. Geo(0.01) } \\ 0.99^{4} \times 0.01 \end{array} \\ & =\mathbf{0 . 0 0 9 6} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	3	Not enough merely to state $p=0.01$ $p^{4} \times q$ Answer, a.r.t. 0.0096
5 (i)	$\begin{aligned} & \int_{-1}^{1} \frac{3}{4}\left(x^{2}-x^{4}\right) d x= \frac{3}{4}\left[\frac{x^{3}}{3}-\frac{x^{5}}{5}\right]_{-1}^{1}[=1 / 5] \\ & 1 / 5-0^{2} \\ &=\mathbf{1} / \mathbf{5} \end{aligned}$	M1 A1 B1 A1	4	Attempt $\int_{-1}^{1} x^{2} \mathrm{f}(x) d x$ Correct indefinite integral Mean 0 clearly indicated Answer $1 / 5$ or a.r.t. 0.200 , don't need $\mu=0$
(ii)	(a) (b) Areas equal, more spread out, so $g_{\text {max }}$ lower (c) $\quad W$ greater as more spread out	B1 M1 A1 B1dep depB1	5	Correct graph, don't need $\mathrm{f}(x)$ as well. Don't allow if graph goes further below axis than "pips". Don't worry too much about exact shape Mention areas or total probability Convincing argument, not just "flatter" W greater... ...with convincing reason

4734 Probability \& Statistics 3

1 (i) $\frac{1}{99}\left(6115.04-\frac{761.2^{2}}{100}\right)$ $=3.240$
M1 AEF
A1 2
(ii) $761.2 / 100 \pm z \sqrt{ }(3.24 / 100)$
M1 $\quad z=1.282,1.645$, or 1.96
$z=1.96$
(7.26,7.96)
B1
A1 3 Allow from $\sigma^{2}=3.21$; allow 7.97 but not from wrong σ. Allow 4 or 5 SF but no more.
(iii) None necessary, since sample size large
OR:None necessary, n large enough for Central Limit theorem to apply
enough for sample mean to have a normal distribution

B1 1

[6]

$2(\bar{x}-12.6) / \sqrt{0.1195 / 10}$
1.383 seen
Solve for variable
$\bar{x} \geq 12.75$
M1 Any variable, correct mean, /10, ignore z
A1 All correct
B1
M1 Allow any symbol (<,>,=)
A1 5 Allow $>$; 12.7 or 12.8 No z seen
[5]

3(i) Choice of newspaper is independent of level of income

B1 1 Or equivalent
(ii) Use df=4

EITHER: CV 13.28, from df=4 or sig. level Largest significance level is 1%

B1 May be implied by 13.28 seen or 0.0152

OR: $\operatorname{UseP}\left(\chi^{2}>12.32\right)$
B1 Accept 0.01
Largest significance level is 1.52%
3 Use of calculator
[4]
SR: from df=6: CV 12.59 used ; $\mathrm{SL}=\mathbf{5 \%}$:
B0M1B1

4(i) $\quad \int_{0}^{1} \frac{4}{3} x^{3} d x+\int_{1}^{2} \frac{4}{3 x^{3}} d x \quad$ Limits seen anywhere \quad M1 \quad For both integrals OR $1-\int_{2}^{\infty} \frac{4}{3 x^{3}} d x$ $\begin{array}{lll}{\left[\frac{x^{4}}{3}\right]_{0}^{1}+\left[-\frac{2}{3 x^{2}}\right]_{1}^{2}} & \text { A1 } & \text { For both } \\ 5 / 6 & \text { A1 } \mathbf{3} & \text { OR } 1-\left[-\frac{2}{3 x^{2}}\right]_{2}^{\infty}\end{array}$
(ii) EITHER: $\int_{0}^{1} \frac{4}{3} x^{3} d x=\frac{1}{3}$

M1
$<1 / 2 \quad$ A1
Median must exceed 1
OR:
A1
$m=\sqrt{ }(4 / 3)$
$>1 \quad \mathrm{AG}$

M1 Attempt to find median
A1 M0 for $1.5^{1 / 4}$
A1 3 Accept 1.15..
(iii) $\int_{0}^{1} \frac{4}{3} x^{4} \mathrm{~d} x+\int_{1}^{\infty} \frac{4}{3 x^{2}} \mathrm{~d} x$
M1 Correct form for at least one integral
$\left[4 x^{5} / 15\right]+[-4 /(3 x)]$
1.6
B1 Both integrals correct without limits
A1 3 AEF
(iv) $\mathrm{E}\left(X^{2}\right)=\ldots .+\int_{1}^{\infty} \frac{4}{3 x} \mathrm{~d} x$

M1 For second integral
Second integral $=\left[\frac{4}{3} \ln x\right]_{1}^{\infty}$
A1
This is not finite, (so variance not finite)
A1 3 AEF
[12]

5 (i)	Justify a relevant Poisson approximation $\mathrm{E}(A)=75 \times 0.022(=1.65), \mathrm{E}(B)=90 \times 0.025(=2.25)$ Sum of two independent Poisson variables X has a Poisson distribution Mean $m=3.9$	M1 B1B1		Using $n>50$ or n large; $n p<5$ or p small (<0.1) or $n p \approx n p q$
		A1		
		B1	5	Accept Po(3.9)
(ii)	$1-\mathrm{P}(\leq 5)$	M1		Or From $\operatorname{Po}(m)$ Accept ≤ 4; OR Exact 1 - sum of at least 5 correct terms
	0.1994	A1		From calculator or tables, art 0.20

6 (i) Use $p_{s} \pm z s$
$z=2.326$
$s=\sqrt{ }(0.12 \times 0.88 / 50)$
(ii) $z(0.12 \times 0.88 / n)^{1 / 2}$
<0.05
Solve to obtain
$n>228.5$
$n \approx 229$ or 230

M1
B1
A1 Or $/ 49$
($0.013,0.227$) Allow limits if penalised in Q1
A1 4 Or $(0.012,0.228)$ from 49

M1 Any z
A1 \quad Allow $=$
M1 Must contain $\sqrt{ } n$
A1 \quad Accept $=$
A1 5 Must be integer [9]

7 (i) Each population of test scores should have normal distributions B1 Context B1 2
(ii) EITHER:Cannot test for normality from data Not variances are not equal OR: Sample variances are close enough to accept population variances equal

B1 $\quad \mathbf{1}$

(iii)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{B}=\mu_{G}, \mathrm{H}_{1}: \mu_{B}>\mu_{G} \\ & s^{2}=(23 \times 86.79+17 \times 93.01) / 40 \\ & =89.4335 \\ & t=(1238.4 / 18-1526.8 / 24) /\left[s^{2}\left(18^{-1}+24^{-1}\right)\right]^{1 / 2} \\ & =1.758 \\ & \text { Use CV of } 1.684 \\ & 1.758>1.684 \\ & \text { Reject } \mathrm{H}_{0} \text { and accept there is sufficient } \\ & \text { evidence at the } 5 \% \text { significance level that } \\ & \text { teenage boys worry more, on average than } \\ & \text { teenage girls. } \end{aligned}$	B1 M1 A1 M1 A1 A1 B1 M1 A1 $\sqrt{ } 9$	For both. No other variables. Allow words Finding pooled estimate of variance May be implied by later value of t With pooled estimate of variance All correct art 1.76, or Consistent Compare correctly with their CV (t value) Not assertive Ft on their 1.758 SR:Using $s^{2}=93.01 / 18+86.79 / 24$: B1M0A0M1A0A1(for 1.749) B1M1 (from 1.645 or 1.684)A1 Max 6/9
8 (i)	$\begin{array}{ll} \sum x f / 80=1.9 & \text { AG } \\ \Sigma x^{2} f / 80-1.9^{2} & \\ 1.365 \text { or } 1.382 & \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	With evidence Or $\times 80 / 79$
	Poisson distribution requires equal mean and variance EITHER: No, mean and variance differ significantly OR: Yes, indicated by sample statistics taking into account sampling error	B1 $\text { B1 } 2$	May be indicated
	$\begin{aligned} & e^{-1.9} 1.9^{3} / 3! \\ & \times 80 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	Or from tables
(iv)	Considering sample as random selection of all similar matches H_{0} : Poisson suitable model Combine last two cells $\begin{aligned} & 0.97^{2} / 11.97+7.73^{2} / 22.73+11.40^{2} / 21.60 \\ & +2.32^{2} / 13.68+5.02^{2} / 10.02 \\ & =\mathbf{1 1 . 6 3} \\ & \text { CV } 7.815 \\ & 11.63>7.815 \end{aligned}$ There is sufficient evidence that a Poisson distribution is not a suitable model confirming (or not) the answer to part (ii)	B1 B1 M1 A1 A1 B1 *dep M1dep* A1 $\sqrt{ } 8$	Any two correct All correct art 11.6 OR p=0.00875 OR $0.00875<0.05$ Ft (ii) SR: If last cells not combined: $\chi^{2}=12.3$ M1A1A1 CV=9.448 or $\mathrm{p}=0.0152$, $\mathrm{B} 1 *$ dep the M1dep*
	E-values or probabilities would change df would increase by 1	$\begin{array}{lcc} \text { B1 } & \\ \text { B1 } & \mathbf{2} \\ & {[17]} \end{array}$	Or other valid observation Or CV would change

4735 Statistics 4

2 (i) Wilcoxon test requires a symmetric
distribution not supported by the diagram B1 $\mathbf{1} \quad$ Or equivalent
(ii) $\mathrm{H}_{0}: m=1.80, \mathrm{H}_{1}: m>1.80$

B1 Needs "population median" if words
Use sign test
M1
Number exceeding $1.8=20$
A1
Use $\mathrm{B}(30,0.5), \mathrm{P}(\geq 20)$ Or $\mathrm{P}(\leq 10)$ M1 0.0494

A1
Compare with 0.05 correctly M1
OR: 1.645 if $\mathrm{N}(15,7.5), z=1.643,1.816$,
2.008

Conclude there is significant evidence that
the median time exceeds 1.80 sec
A1 $\sqrt{ }$
used; OR CR ($X \geq 20$)
$\mathrm{ft} p$ or z
3 (i) Marginal distribution of X
$\begin{array}{lllll}x & 0 & 1 & 2 & 3\end{array}$
$\begin{array}{llll}p & 0.27 & 0.23 & 0.32 \\ 0.18 & \text { B1 }\end{array}$
$1 \times 0.23+2 \times 0.32+3 \times 0.18$
M1
$=1.41 \quad \mathrm{~A} 1$
3
(ii) $\mathrm{P}(Y>X)=0.08+0.05+0.03+0.08+0.06+0.07 \quad \mathrm{M} 1$ $=0.37 \quad \mathrm{~A} 1$ 2
(iii) Use $\mathrm{P}(Y>X \cap X>0) / \mathrm{P}(X>0)$

M1

$\mathrm{P}(X>0)=0.73 \quad \mathrm{~A} 1$
$\mathrm{P}(Y>X \cap X>0)=0.08+0.06+0.07 \quad$ A1
21/73 A1
A1 4 AEF
(iv)The director cannot conclude independence M1 from cov. So director's conclusion incorrect.A1
OR: $\operatorname{Eg} \mathrm{P}(X=0 \cap Y=0)=0.11$, M1 $\mathrm{P}(X=0) \mathrm{P}(Y=0)=0.27 \times 0.29 \neq \mathrm{P}(X=0 \cap Y=0) \quad$ A1

Idea that independence implies $\operatorname{cov}=0$
but not the reverse

2 (11)

4 (i) Variances seem not to be equal
B1 $\quad 1$
(ii) $\quad \mathrm{H}_{0}: m_{M}=m_{A}, \mathrm{H}_{1}: m_{M} \neq m_{A}$

B1
"average"
$R_{m}=40, m(m+n+1)-R_{m}=72$
$W=40$
CR: $W \leq 38$
40 not in CR, so do not reject H_{0}
Insufficient evidence that median times differA1
6 (7) In context. B1 if no M1 but conclusion correct Allow average here

```
5 (i) }a+b=3/
B1
M1
    M'(0)=33/8
    1/2+3a+4b=33/8
    A1
    Solve simultaneously
                            M1
    a=1/8 AG
    A1
    b=5/8 A1
A1 6
```

(ii) $\mathrm{M}^{\prime \prime}(t)=\mathrm{e}^{2 t}+9 / 8 \mathrm{e}^{3 t}+10 \mathrm{e}^{4 t}$

B1
$\mathrm{M}^{\prime \prime}(0)-\left(\mathrm{M}^{\prime}(0)\right)^{2}$
$97 / 8-\left(3^{3} / 8\right)^{2} \quad ;{ }^{47} / 64$
(iii) $x=2,3,4$

B1 1 (11)

6 (i)	$\mathrm{P}(Y>y)=1-\mathrm{F}(y)$	M1	Allow any variables
$=a^{3} / y^{3}$	A1		
	$\mathrm{P}(S>s)=\mathrm{P}($ all 3 values $>s)=(a / s)^{9} \mathrm{AG}$	A 1	
$\mathbf{f}(s)=\mathrm{d} / \mathrm{d} s\left(1-(a / s)^{9}\right)$	M 1		
	$= \begin{cases}9 \frac{a^{9}}{s^{10}} & s \geq a, \\ 0 & s<a\end{cases}$	A1	$\mathbf{5}$

(ii)	$\int_{a}^{\infty} \frac{a^{9}}{s^{9}} \mathrm{~d} s$	M1		
	$=9 a / 8$	A1		
	S not unbiased since this not equal to a $T_{1}=8 S / 9$		4	Ft E(S)
(iii)	$\operatorname{Var}\left(T_{1}\right)=a^{2} / 63, \operatorname{Var} T_{2}=a^{2} / 9$	M1 A1 for both		Correct method
	$\operatorname{Var}\left(T_{1}\right)<\operatorname{Var}\left(T_{2}\right), T_{1}$ is more efficient	A1 $\sqrt{ }$	3	Comparison, completion.. $\sqrt{ }$ one variance correct with same dimensions
(iv)	$t_{1}=4.0, t_{2}=5.4$	B1		Both
	From data $a \leq 4.5$ and $t_{2}>4.5$	B1B1	3 (15)	AEF

4736 Decision Mathematics 1

1	(i)	Biggest/largest/last number (only) (Not showing effect on a specific list)	B1	Accept bubbling to left unless inconsistent with part (ii): Smallest/first number	[1]
	(ii)	21345 horizontally or vertically (may see individual comparisons/swaps) [For reference: original list was 32154] 4 comparisons and 3 swaps (both correct)	M1 A1	Or bubbling to left: 13245 Watch out for shuttle sort used If not stated, assume that comparisons come first	[2]
	(iii)	12345 One (more pass after this)	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	FT from their first pass with their bubbling if possible Watch out for 'One swap (in $2^{\text {nd }}$ pass)'	[2]
	(iv)	$\begin{aligned} & (3000 \div 500)^{2} \times 0.2 \\ & =7.2 \text { seconds } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$6^{2} \times 0.2 \text { or } 8 \times 10^{-7} \times 9 \times 10^{6}$ or any equivalent calculation cao UNITS	[2]
Total $=7$					

2	(i)		M1 A1 B1	A graph with four vertices of orders 2, 2, 4, 4 (ignore any vertex labels) A connected graph Recognition that their graph is not simple (although it is connected). Need not use the word 'simple'.	[3]
	(ii)		M1 A1 B1	Any graph with four vertices of orders 2, 2, 4, 4 (that is topologically different from that in part (i)) A graph that is not connected Recognition in words that their graph is not connected	3]
Total $=$					6

3	(i)	$\begin{array}{ll} y \leq x+2 & \\ x+2 y \geq 6 & \left(y \geq-\frac{1}{2} x+3\right) \\ 2 x+y \leq 12 & (y \leq-2 x+12) \\ \hline \end{array}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Line $y=x+2$ in any form Line $x+2 y=6$ in any form Line $2 x+y=12$ in any form All inequalities correct	[4]
	(ii)	$\begin{aligned} & x+2 y=6 \text { and } y=x+2 \Rightarrow\left(\frac{2}{3}, 2 \frac{2}{3}\right) \\ & y+2 x=12 \text { and } y=x+2 \Rightarrow\left(3 \frac{1}{3}, 5 \frac{1}{3}\right) \\ & y+2 x=12 \text { and } x+2 y=6 \Rightarrow(6,0) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Follow through if possible Calculating from their lines or implied from either A mark $\begin{array}{ll} \left(\frac{2}{3}, \frac{8}{3}\right) & (\operatorname{art}(0.7,2.7)) \\ \left(\frac{10}{3}, \frac{16}{3}\right) & (\operatorname{art}(3.3,5.3)) \\ (6,0) \text { cao } & \\ \hline \end{array}$	[4]
	(iii)	$\begin{aligned} & \left(\frac{2}{3}, 2 \frac{2}{3}\right) \Rightarrow 11 \frac{1}{3} \\ & \left(3 \frac{1}{3}, 5 \frac{1}{3}\right) \Rightarrow 32 \frac{2}{3} \\ & (6,0) \Rightarrow 30 \end{aligned}$ At optimum, $x=3 \frac{1}{3}$ and $y=5 \frac{1}{3}$ $\text { Maximum value }=32 \frac{2}{3}$	M1 A1 A1	Follow through if possible Testing vertices or using a line of constant profit (may be implied) Accept ($3 \frac{1}{3}, 5 \frac{1}{3}$) identified (ft) $\begin{equation*} 32 \frac{2}{3} \text { (air } 32.6 \text { to } 32.7 \text {) } \tag{ft} \end{equation*}$	[3]
	(iv)	$\begin{aligned} & 5 \times 3 \frac{1}{3}+k \times 5 \frac{1}{3} \geq 5 \times 6+k \times 0 \\ & \Rightarrow k \geq 2.5 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$5 \times 3 \frac{1}{3}+k \times 5 \frac{1}{3}$ (ft) or implied $5 \times 6+k \times 0$ or 30 or implied Greater than or equal to 2.5 (cao)	[3]
Total $=14$					

4	(i)		M1 M1 A1 B1 B1 B1 B1	Both 6 and 5 shown at B All temporary labels correct including F and J No extra temporary labels All permanent labels correct (may omit F and/or J) cao Order of labelling correct (may omit F and/or J, may reverse F and J) cao $\begin{aligned} & A-E-B-G-H-K \text { cao } \\ & 14 \text { cao } \end{aligned}$	[7]
	(ii)	$\begin{aligned} & \text { Without using } C J \text { : } \\ & \text { Route }=A-E-B-G-F-J \\ & \text { Length }=21 \text { metres } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Follow through their (i) $A-E-B-G-F-J$ 21	[2]
	(iii)	More than 2 metres (Answer of 'more than 7 metres' or '7 metres' $\Rightarrow \mathrm{M} 1, \mathrm{~A} 0$)	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	2 (cao) More than, or equivalent (Answer of 3 or $\geq 3 \Rightarrow \mathrm{SC} 1$)	[2]
Total $=11$					

5	(i)							B1 B1 B1 M1 A1	$\begin{aligned} & A W=3-x \\ & B W=3-y \\ & C E=4-x-y, \text { in any form } \end{aligned}$ An appropriate calculation for their table Leading to given result	[5]
			A							
			B							
			C		- y		$y-1$			
		$\begin{aligned} & \text { Total cost }= £(250 x+250(3-x) \\ &+200 y+140(3-y) \\ &+300(4-x-y)+280(x+y-1)) \\ &= £(2090-20 x+40 y) \quad(\mathrm{AG}) \end{aligned}$								
	(ii)	$\begin{aligned} & 2090-20 x+40 y \leq 2150 \\ & \Rightarrow-20 x+40 y \leq 60 \\ & \Rightarrow-x+2 y \leq 3 \end{aligned}$				(AG)		B1	Showing where the given inequality comes from	[1]
	(iii)	$\begin{aligned} & 50(3-x)+40(3-y)+60(x+y-1) \\ & =210+10 x+20 y \\ & \text { So need to maximise } x+2 y \\ & \hline \end{aligned}$)	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Follow through their table Correct expression $210+10 x+20 y$	[2]
	(iv)	P	x	y	s	t	-	$\begin{array}{\|l} \text { B1 } \\ \text { B1 } \end{array}$	$\begin{aligned} & \hline \text { Rows and columns may be in any } \\ & \text { order } \\ & -1-2 \text { in objective row } \\ & \text { Constraint rows correct } \end{aligned}$	[2]
		1	-1	-2	0	0	0			
		0	-1	2	1	0	3			
		0	1	1	0	1	3			
	(v)	Pivot on the 2 in the y column						B1	Correct choice of pivot from y column Follow through their tableau and valid pivot if possible Pivot row correct Other rows correct	[6]
		1	-2	0	1	0	3			
		0	-0.5	1	0.5	0	1.5			
		0	1.5	0	-0.5	1	1.5			
		Pivot on 1.5 in the x column						$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \end{array}$		
		1	0	0	$\frac{1}{3}$	11 $\frac{1}{3}$	5	M1	Correct choice of pivot Follow through their tableau and valid pivot if possible Correct tableau Correct answer only	
		0	0	1	$\frac{1}{3}$	$\frac{1}{3}$	2	A1 B1		
		0	1	0	$-\frac{1}{3}$	$\frac{2}{3}$	1			
		$x=1, y=2$								
								Total $=$		16

(a)(i)	Route Inspection (problem)	B1	Or Chinese postman (problem)	[1]
(ii)	Odd nodes are A, B, C and D $\begin{aligned} & A B=250 \quad A C=100 \\ & C D=\underline{200} \quad A D=200 \\ & 450 \\ & \text { Repeat } A C \text { and } B F E D=350 \\ & \text { Length of shortest route }=3350 \text { metres } \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Identifying odd nodes (may be implied from working) Pairing odd nodes (all three pairings considered) M mark may not be implied 350 as minimum 3350 m or 3.35 km UNITS	[4]
(iii)	C is an odd node, so we can end at another odd node. $A B=250 \quad A D=200 \quad B D=250$ Repeat $A D=200$ Length of route $=3200$ metres Route ends at B	$\begin{aligned} & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Working need not be seen May be implied from answer 3200 B	[3]
(b)(i)	$D-G-C-A-E-F-B-H-D$ 1580 metres $A-C-D-G$ then method stalls	M1 A1 B1	Correct cycle If drawn then arcs must be directed 1580 Identifying the stall	[3]
(ii)	$\begin{aligned} & B F=100 \\ & F E=50 \\ & E D=100 \\ & D G=80 \\ & E H=110 \\ & D C=200 \end{aligned}$ Order of adding nodes: $B F E D G H C$ Total weight of tree $=640$ metres	M1 A1 B1 A1 B1	Use of Prim's algorithm to build tree (e.g. an attempt at list of arcs or order of adding vertices). NOT Kruskal Correct arcs chosen (listed or seen on tree) A correct tree with vertices labelled Order stated or clearly implied 640	[5]
(iii)	$\begin{aligned} & \text { Lower bound }=640+100+200=940 \\ & 940 \text { metres } \leq \text { shortest tour } \leq 1580 \text { metres } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$300+$ weight of their tree their $940 \leq$ length \leq their 1580 (condone use of $<$ here)	[2]
Total $=18$				

For reference:

4737 Decision Mathematics 2

ANSWERED ON INSERT

3	(i)	$\begin{aligned} & \{S A, B, D, G\},\{C, E, F, T) \text { (given) } \\ & A C=4, B C=2, B E=1, D E=2, G E=5, G T=6 \\ & 4+2+1+2+5+6 \\ & =20 \text { litres per minute } \end{aligned}$	M1 $\mathrm{A} 1$	Identifying the correct arcs, on a diagram or list or by using $4,2,1$, 2, 5, 6 20 from a correct calculation	[2]
	(ii)	At most 2 litres per minute can enter G so the arc $G E$ can carry at most 2 litres per minute	B1	Maximum into $G=2$	[1]
	(iii)	At most 8 litres per minute can flow into E Flow shown on diagram on insert Flow in = flow out for each vertex except S, T A feasible flow of 8 litres per minute through E	B1 M1 A1	8 A flow of the rate they have claimed through E (irrespective of whether it is feasible) (directions may not be changed, assume a blank means 0) No pipe capacities exceeded and flow through $E=8$	[3]
	(iv)	Arrows labelled on diagram $\begin{array}{llll} A B=3 & B C=2 & C E=3 & E F=4 \\ B A=0 & C B=0 & E C=0 & F E=0 \end{array}$ $\begin{array}{lll} S B=4 & B E=0 & E T=5 \\ B S=1 & E B=1 & T E=1 \end{array}$ $\begin{array}{lll} B D=3 & D E=2 & E G=0 \\ D B=0 & E D=0 & G E=5 \end{array}$ $\begin{array}{lll} S D=0 & D G=0 & G T=4 \\ D S=2 & G D=2 & T G=2 \\ \hline \end{array}$	M1 M1 A1	Assume blanks mean 0 Arrows on arcs on one of the routes SACFT, SBET, SDGT labelled correctly, or all labels on the route reversed Arrows on all three routes labelled correctly or all reversed All arrows labelled correctly, not reversed	[3]
	(v)	Amount that flows along $S B D E T=2$ litres per min $\begin{array}{llll} S B=42 & B D=31 & D E=20 & E T=53 \\ B S=13 & D B=02 & E D=02 & T E=13 \\ \hline \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	2 For arrows on route $S B D E T$: Labels updated consistently These all labelled correctly (and not reversed)	[3]
	(vi)	Route used $=S B C E T$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	SBCET listed For arrows on route SBCET: Labels updated consistently These all labelled correctly (and not reversed)	[3]
	(vii)		B1	Follow through their (v) and (vi) if possible Assume blanks mean 0	[1]
	(viii)	Eg cut through arcs $S A, S B, S D$ Or $\operatorname{arcs} A C, B C, B E, D E, D G$	M1 A1	A suitable cut chosen, indicated in any way Indicated by listing arcs cut	[2]

PART (a) ANSWERED ON INSERT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 4 \& (a) \& \begin{tabular}{l}
\begin{tabular}{|c|}
\hline Stage \\
\hline 2 \\
\hline 1 \\
\\
\hline 0 \\
\hline
\end{tabular} \\
Length \\
Route \(=\)
\end{tabular} \& \& \begin{tabular}{l}
\begin{tabular}{|c|}
\hline Action \\
\hline 0 \\
\hline 0 \\
0 \\
\hline 0 \\
\hline 1 \\
\hline 1 \\
\hline 2 \\
\hline 1 \\
\hline 2 \\
\hline 0 \\
\hline 1 \\
\hline 2 \\
\hline
\end{tabular} \\
t path \(=\)
\[
(1 ; 1)-(2
\]
\end{tabular} \& \begin{tabular}{|c|}
Working \\
\hline 5 \\
\hline 4 \\
\hline 4 \\
\hline \(3+\mathbf{5}=\mathbf{8}\) \\
\hline \(4+\mathbf{4}=\mathbf{8}\) \\
\hline \(2+\mathbf{4}=\mathbf{6}\) \\
\hline \(4+\mathbf{4}=\mathbf{8}\) \\
\hline \(6+\mathbf{4}=\mathbf{1 0}\) \\
\hline \(5+\mathbf{4}=\mathbf{9}\) \\
\hline \(4+\mathbf{8}=\mathbf{1 2}\) \\
\hline \(5+\mathbf{8}=\mathbf{1 3}\) \\
\hline \(2+\mathbf{1 0}=\mathbf{1 2}\) \\
\hline 13 \\
\hline 2\()-(3 ; 0)\)
\end{tabular} \& \begin{tabular}{|c|}
\hline \begin{tabular}{c}
Suboptimal \\
maximum
\end{tabular} \\
\hline 5 \\
\hline 4 \\
\hline 4 \\
\hline 8 \\
8 \\
\hline 8 \\
\hline 10 \\
\hline 13 \\
\hline
\end{tabular} \& B1
M1
A1
B1
M1

A1
B1

B1 \& | 5, 4, 4 identified as suboptimal maxima for stage 2 |
| :--- |
| Transferring suboptimal maxima from stage 2 to stage 1 correctly Correct additions or totals seen for all rows in stage 1 $8,8,10$ identified as suboptimal maxima for stage 1 (cao) |
| Transferring suboptimal maxima from stage 1 to stage 0 correctly Correct additions or totals seen for all rows in stage 0 13 |
| Correct route or in reverse (including ($0 ; 0$) and ($3 ; 0$)) | \& [8]

\hline \& (b)(i) \& \multicolumn{5}{|l|}{I (5)} \& M1

A1 \& | Condone directions missing Must be activity on arc A reasonable attempt, arcs should be labelled |
| :--- |
| Any correct form Condone extra dummies provided precedences are not violated, accept networks with multiple end vertices Arc weights may be shown but are not necessary | \& [2]

\hline \& (ii) \& \multicolumn{5}{|l|}{Minimum project completion time $=13$ day Critical activities B, G, L} \& M1
A1
M1

A1
B1

B1 \& | Follow through their network if possible |
| :--- |
| Values at vertices may be recorded using any consistent notation |
| Forward pass with no more than one independent error Forward pass correct |
| Backward pass with no more than one independent error (follow through their 13) |
| Backward pass correct |
| 13 stated, cao |
| B, G, L correct answer only | \& [6]

\hline \& (iii) \& \& \& \& \& \& B1

B1 \& | Not follow through |
| :--- |
| A directed dummy from end of G to start of K |
| A directed dummy from end of G to start of L |
| Condone extra dummies provided precedences are not violated Watch out for K following I | \& [2]

\hline \& \& \& \& \& \& \& \& \multicolumn{2}{|r|}{Total $=18$}

\hline
\end{tabular}

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) June 2008 Examination Series

Unit Threshold Marks

7892		Maximum	A	B	C	D	E	U
4721	Raw	72	63	55	47	39	32	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	49	42	35	29	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	55	47	40	33	26	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	56	49	43	37	31	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	57	49	41	34	27	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	49	43	37	31	25	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	54	47	41	35	29	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	61	53	45	37	29	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	56	47	38	29	20	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	56	47	38	29	21	0
	UMS	100	80	70	60	50	40	0
4731	Raw	72	59	50	42	34	26	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	60	52	45	38	31	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	56	48	41	34	27	0
	UMS	100	80	70	60	50	40	0
4734	Raw	72	55	48	41	34	28	0
	UMS	100	80	70	60	50	40	0
4735	Raw	72	56	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	53	46	39	32	26	0
	UMS	100	80	70	60	50	40	0
4737	Raw	72	61	54	47	40	34	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 9 0}$	300	240	210	180	150	120	0
$\mathbf{3 8 9 1}$	300	240	210	180	150	120	0
$\mathbf{3 8 9 2}$	300	240	210	180	150	120	0
$\mathbf{7 8 9 0}$	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
$\mathbf{7 8 9 2}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	\mathbf{U}	Total Number of Candidates
$\mathbf{3 8 9 0}$	33.3	50.4	65.4	77.0	86.6	100	14679
$\mathbf{3 8 9 1}$	100	100	100	100	100	100	1
$\mathbf{3 8 9 2}$	57.2	76.7	88.2	94.1	97.6	100	1647
$\mathbf{7 8 9 0}$	45.4	67.3	82.4	92.1	97.8	100	10512
$\mathbf{7 8 9 1}$	33.3	66.7	100	100	100	100	6
$\mathbf{7 8 9 2}$	56.5	77.9	90.0	95.4	98.2	100	1660

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England

Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

