

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

June 2008

3890-2/7890-2/MS/R/08

hed by the

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This report on the Examination provides information on the performance of candidates which it is hoped will be useful to teachers in their preparation of candidates for future examinations. It is intended to be constructive and informative and to promote better understanding of the syllabus content, of the operation of the scheme of assessment and of the application of assessment criteria.

Reports should be read in conjunction with the published question papers and mark schemes for the Examination.

OCR will not enter into any discussion or correspondence in connection with this Report.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

MMN. My Maths Cloud Com

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/ContentPage

4721 Core Mathematics 1	1
4722 Core Mathematics 2	6
4723 Core Mathematics 3	10
4724 Core Mathematics 4	13
4725 Further Pure Mathematics 1	17
4726 Further Pure Mathematics 2	21
4727 Further Pure Mathematics 3	24
4728 Mechanics 1	31
4729 Mechanics 2	33
4730 Mechanics 3	35
4731 Mechanics 4	38
4732 Probability & Statistics 1	42
4733 Probability & Statistics 2	46
4734 Probability & Statistics 3	487
4735 Statistics 4	510
4736 Decision Mathematics 1	543
4737 Decision Mathematics 2	598
Grade Thresholds	643

4721 Core Mathematics 1

1 (i) $n = -2$	B1 1
(ii) $n=3$	B1 1

(iii) M1
$$\sqrt{4^3}$$
 or $64^{\frac{1}{2}}$ or $\left(4^{\frac{1}{2}}\right)^3$ or $\left(4^3\right)^{\frac{1}{2}}$ or

 $4 \times \sqrt{4}$ with brackets correct if used

Use a substitution to obtain a quadratic or

$$n = \frac{3}{2}$$

 $v = (x \pm 2)^2$ 2 (i) **M1**

$$y = (x-2)^2$$
 A1 2

A1 2

(ii)
$$y = -(x^3 - 4)$$
 B1 oe

3 (i)
$$\sqrt{2 \times 100} = 10\sqrt{2}$$
B1

(ii)
$$\frac{12}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$$
 B1

1 Attempt to express $5\sqrt{8}$ in terms of $\sqrt{2}$ **M1** (iii) $10\sqrt{2} - 3\sqrt{2} = 7\sqrt{2}$ **A1**

4
$$y = x^{\frac{1}{2}}$$

 $2y^2 - 7y + 3 = 0$ M1* Use a substitution to obtain a quadratic or

factorise into 2 brackets each containing
$$x^{\frac{1}{2}}$$

$$(2y-1)(y-3) = 0$$
M1depCorrect method to solve a quadratic
$$y = \frac{1}{2}, y = 3$$
A1

M1*

M1 Attempt to square to obtain
$$x$$

$$x = \frac{1}{4}, x = 9$$
A1

SR If first M1 not gained and 3 and ½ given as final answers, award B1 5

5

dx

M1 Attempt to differentiate

A1
$$kx^{-\frac{1}{2}}$$

A1

M1 Correct substitution of x = 9 into their

A1
$$\frac{7}{3}$$
 only

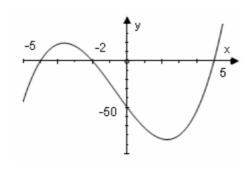
5

6 (i) (x-5)(x+2)(x+5)

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} + 1$

 $=4\left(\frac{1}{\sqrt{9}}\right)+1$

$$=(x^2-3x-10)(x+5)$$


$$= x^3 + 2x^2 - 25x - 50$$

B1 $x^2 - 3x - 10$ or $x^2 + 7x + 10$ or $x^2 - 25$

M1 Attempt to multiply a quadratic by a linear factor

A1 3

(ii)

B1 +ve cubic with 3 roots (not 3 line segments)

B1 $\sqrt{(0, -50)}$ labelled or indicated on y-axis

B1 (-5, 0), (-2, 0), (5, 0) labelled or indicated on *x*-axis and no other *x*- intercepts

3

7 (i) 8 < 3x - 2 < 11

$$\frac{10}{3} < x < \frac{13}{3}$$

 $x \ge 0, x \le -2$

M1 2 equations or inequalities both dealing with all 3 terms resulting in a < kx < b

A1 10 and 13 seen

A1

(ii) $x(x+2) \ge 0$

3 M1

1 Correct method to solve a quadratic

A1 0, -2

M1 Correct method to solve inequality

A1

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2kx + 1$

- **B**1 One term correct
- **B**1 Fully correct

2

(ii) $3x^2 - 2kx + 1 = 0$ when x = 1

their $\frac{dy}{dx} = 0$ soi M1

3 - 2k + 1 = 0

x = 1 substituted into their $\frac{dy}{dx} = 0$ M1 <u>A1</u>√

(iii) $\frac{d^2 y}{dx^2} = 6x - 4$

Substitutes x = 1 into their $\frac{d^2 y}{dx^2}$ and looks at sign M1

When x = 1, $\frac{d^2 y}{dx^2} > 0$: min pt

A1 States minimum CWO

(iv) $3x^2 - 4x + 1 = 0$

their $\frac{dy}{dx} = 0$ M1

(3x-1)(x-1) = 0

M1 correct method to solve 3-term quadratic

 $x = \frac{1}{3}, x = 1$

WWW at any stage **A1**

3

9	(i)
_	(-)

$$(x-2)^2 + (y-1)^2 = 100$$

$$x^2 + y^2 - 4x - 2y - 95 = 0$$

B1
$$(x-2)^2$$
 and $(y-1)^2$ seen

B1
$$(x \pm 2)^2 + (y \pm 1)^2 = 100$$

(ii)
$$(5-2)^2 + (k-1)^2 = 100$$

$$(k-1)^2 = 91$$
 or $k^2 - 2k - 90 = 0$

$$k = 1 + \sqrt{91}$$

M1
$$x = 5$$
 substituted into their equation

A1 correct, simplified quadratic in
$$k$$
 (or y) obtained

(iii) distance from (-3, 9) to (2, 1)

$$=\sqrt{(2-3)^2+(1-9)^2}$$

$$=\sqrt{25+64}$$

$$\sqrt{89}$$
 < 10 so point is inside

M1 Uses
$$(x_2 - x_1)^2 + (y_2 - y_1)^2$$

B1 compares their distance with 10 and makes consistent conclusion

(iv) gradient of radius =
$$\frac{9-1}{8-2}$$

$$=\frac{4}{3}$$

gradient of tangent =
$$-\frac{3}{4}$$

$$y-9=-\frac{3}{4}(x-8)$$

$$y - 9 = -\frac{3}{4}x + 6$$

$$y = -\frac{3}{4}x + 15$$

M1 uses
$$\frac{y_2 - y_1}{x_2 - x_1}$$

10 (i)	$2(x^2-3x)+11$
	Γ (2) ²

$$= 2 \left[\left(x - \frac{3}{2} \right)^2 - \frac{9}{4} \right] + 11$$

$$=2\left(x-\frac{3}{2}\right)^2+\frac{13}{2}$$

B1
$$p = 2$$

B1
$$q = -\frac{3}{2}$$

M1
$$r = 11 - 2q^2$$
 or $\frac{11}{2} - q^2$

A1
$$r = \frac{13}{2}$$

(ii)
$$\left(\frac{3}{2}, \frac{13}{2}\right)$$

B1√

4

(iii)
$$36-4\times2\times11$$

= -52

M1 uses $b^2 - 4ac$ A1
2

B1 cao 1

(v)
$$2x^2 - 6x + 11 = 14 - 7x$$

$$2x^2 + x - 3 = 0$$

$$(2x+3)(x-1) = 0$$
$$x = -\frac{3}{2}, x = 1$$

$$y = \frac{49}{2}, y = 7$$

M1* substitute for x/y or attempt to get an equation in 1 variable only

A1 obtain correct 3 term quadratic

M1dep correct method to solve 3 term quadratic

A1

A1

SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1

June 20. Parts Cloud Con

4722 Core Mathematics 2

1		$(2-3x)^6 = 2^6 + 6.2^5.(-3x) + 15.2^4.(-3x)^2$	M1	Attempt (at least) first two terms - product of binomial coefficient and powers of 2 and (-
)3 <i>x</i>	$= 64 - 576x + 2160x^2$	A1	Obtain 64 – 576 <i>x</i>
			M1	Attempt third term - binomial coefficient and powers of 2 and $(-)3x$
			A1	Obtain $2160x^2$
	OR		3.41	Addressed assessment in the later of the state
			M 1	Attempt expansion involving all 6 brackets
			A1	Obtain 64
			A1	Obtain $-576x$
			A1	Obtain $2160x^2$

SR if the expansion is attempted in descending order, and the required terms are never seen, then B1 B1 B1 for

		$4860x^4$, $-2916x^5$, $729x^6$	4	
2	(i)	$u_2 = \frac{2}{3}$		Obtain correct u_2
		$u_3 = {}^{-1}/_2$		31 $\sqrt{}$ Obtain correct u_3 from their u_2
		$u_4 = 3$	$ \begin{array}{c c} \mathbf{B1}\sqrt{} & 0 \\ \hline 3 \end{array} $	Obtain correct u_4 from their u_3
	(ii)	sequence is periodic / cyclic / repeating	B1 A	Any equivalent comment
3	(i)	$\frac{1}{2} \times 8^2 \times \theta = 48$	M1 S	State or imply $(\frac{1}{2})$ $8^2\theta = 48$
	,,	Hence $\theta = 1.5$ radians	A1 (Obtain $\theta = 1.5$ (or 0.477π), or equiv
-	(ii)	area = $48 - \frac{1}{2} \times 8^2 \times \sin 1.5$	M1* A	Attempt area of Δ using (½) $8^2 \sin \theta$
		=48-31.9		Attempt 48 – area of Δ
		= 16.1	A1 (3	Obtain 16.1 cm ²
4	(i)	f(3) = 27a - 36 - 21a + 12 = 0	M1* A	Attempt f(3)
	()	6a = 24		Equate attempt at f(3) to 0 and attempt to solve
		a = 4		Obtain $a = 4$
	OR			
			M1* A	Attempt complete division / matching coeffs
			M1d* I	Equate remainder to 0
			A1 (Obtain $a = 4$
	(ii)	f(-2) = -32 - 16 + 56 + 12	M1 A	Attempt f(-2)
		= 20	$\mathbf{A1}\sqrt{}$	Obtain 20 (or $6a - 4$, following their a)

5 (i)	$\int x \mathrm{d}y = \int ((y-3)^2 - 2) \mathrm{d}y$	B1	Show $x = y^2 - 6y + 7$ convincingly
	$=\int (y^2 - 6y + 7) dy$ A.G.	B1	State or imply that required area = $\int x dy$
	$3 + \sqrt{(2+2)} = 5$, $3 + \sqrt{(14+2)} = 7$	<u>B1</u>	Use $x = 2$, 14 to show new limits of $y = 5$, 7
		3	
(ii)	$\left[\frac{1}{3}y^3 - 3y^2 + 7y\right]_5^7$	M1	Integration attempt, with at least one
erm	$=(^{343}/_3-147+49)-(^{125}/_3-75+35)$		correct
	(73 117 19) (73 75 35)	A1	All three terms correct
	$=16^{1}/_{3}-1^{2}/_{3}$	M 1	Attempt $F(7) - F(5)$
	$= 14^{2}/_{3}$	<u>A1</u>	Obtain $14^{2}/_{3}$, or exact equiv
		4	
6 (i)	$ABC = 360 - (150 + 110) = 100^{\circ}$ A.G.	B1	Show convincingly that angle ABC is 100°
(ii)	$CA^2 = 15^2 + 27^2 - 2 \times 15 \times 27 \times \cos 100^0$	M1	Attempt use of correct cosine rule
	= 1094.655		
	CA = 33.1	A1 2	Obtain 33.1 km
(iii)	$\frac{\sin C}{15} = \frac{\sin 100}{33.1}$ or $\frac{\sin A}{27} = \frac{\sin 100}{33.1}$	M1	Attempt use of sine rule to find angle C or A
	13 33.1 27 33.1		(or equiv using cosine rule)
		A1 √	Correct unsimplified eqn, following their (
	$C = 26.5^{\circ}$ $A = 53.5^{\circ}$	A1	Obtain $C = 26.5^{\circ}$ or $A = 53.5^{\circ}$ (allow 53.4°)
	Hence bearing is 263°	A1 √	Obtain 263 or 264 (or 290° – their angle C 210 + their angle A)
		4	210 then ungle 11)
(a)	$\int (x^5 - x^4 + 5x^3) dx$	M1	Expand brackets and attempt integration, or
	•		other valid integration attempt
	$= \frac{1}{6}x^6 - \frac{1}{5}x^5 + \frac{5}{4}x^4 (+c)$	A1	Obtain at least one correct term
		A1	Obtain a fully correct expression
		B1	For $+ c$, and no \int or dx (can be given in
		4	(b)(i) if not given here)
(b)	(i) $-6x^{-3}(+c)$	 M1	Obtain integral of the form kx^{-3}
` '		<u>A1</u>	Obtain $-6x^{-3}$ (+c)
		2	
	(ii) $\left[-6x^{-3}\right]^{6}$	B1*	State or imply that $F(\infty) = 0$ (for kx^n , $n-1$)
	_	D1.d*	Obtain 3/. (or equiv)

B1d* Obtain ³/₄ (or equiv)

8	(i)
-	(-)

- Attempt sketch of exponential graph (1st quad) **M1** - if seen in 2nd quad must be approx correct
 - Correct graph in both quadrants
- **B**1 State or imply (0, 2) only

(ii) $8^x = 2 \times 3^x$

$$\log_2 8^x = \log_2 (2 \times 3^x)$$

$$x\log_2 8 = \log_2 2 + x\log_2 3$$

$$3x = 1 + x \log_2 3$$

$$x (3 - \log_2 3) = 1$$
, hence $x = \frac{1}{3 - \log_2 3}$ **A.G.**

- **M1** Form equation in x and take logs (to any consistent base, or no base) - could use log 8
- **M1** Use $\log a^b = b \log a$
- **M1** Use $\log ab = \log a + \log b$, or equiv with $\log a/b$
- **M1** Use $\log_2 8 = 3$
- **A1** Show given answer correctly

OR $8^x = 2 \times 3^x$

$$2^{3x} = 2 \times 3^x$$

$$2^{(3x-1)} = 3^x$$

$$\log_2 2^{(3x-1)} = \log_2 3^x$$

$$(3x-1)\log_2 2 = x \log_2 3$$

$$x(3 - \log_2 3) = 1$$
, hence $x = \frac{1}{3 - \log_2 3}$ **A.G.**

- Use $8^x = 2^{3x}$ **M1**
- **M1** Attempt to rearrange equation to $2^k = 3^x$
- Take logs (to any base) **M**1
- Use $\log a^b = b \log a$ **M1**
- Show given answer correctly **A1**
- 5

A1

3

9 (a) (i) $2\sin x \cdot \frac{\sin x}{\cos x} - 5 = \cos x$

$$2\sin^2 x - 5\cos x = \cos^2 x$$
$$2 - 2\cos^2 x - 5\cos x = \cos^2 x$$

$$3\cos^2 x + 5\cos x - 2 = 0$$

$$\cos x = \frac{1}{3}$$

$$x = 1.23 \text{ rad}$$

x = 5.05 rad

- Use $\tan x = \frac{\sin x}{\cos x}$ **M1**
- **M1** Use $\sin^2 x \equiv 1 - \cos^2 x$
- **A1** Show given equation convincingly 3

 $(3\cos x - 1)(\cos x + 2) = 0$

 ≈ 0.837

- **M1** Attempt to solve quadratic in cosx
- **M**1 Attempt to find x from root(s) of quadratic
- **A1** Obtain 1.23 rad or 70.5°
- **A1**√ Obtain 5.05 rad or 289° (or $2\pi / 360^{\circ}$ - their solution)
 - **SR: B1 B1** for answer(s) only
- **(b)** $0.5 \times 0.25 \times \{\cos 0 + 2(\cos 0.25 + \cos 0.5 + \cos 0.75) + \cos 1\}$
- 4 M1Attempt y-coords for at least 4 of the correct 5
- **M1** Use correct trapezium rule, any h, for their y values to find area between x = 0 and x = 1
- **M1** Correct *h* (soi) for their *y* values
- **A1** Obtain 0.837
- 4

$u_{15} = 2 + 14 \times 0.5$	M1	Attempt use of $a + (n-1)d$
= 9 km	A1	Obtain 9 km
	2	
$u_{20} = 2 \times 1.1^{19} = 12.2$	B1	State, or imply, $r = 1.1$
	M1	Attempt u_{20} , using ar^{n-1}
$u_{19} = 2 \times 1.1^{18} = 11.1$	A1	Obtain $u_{20} = 12.2$, and obtain $u_{19} = 11.1$
	B 1	State, or imply, $r = 1.1$
	M1	Attempt to solve $ar^{n-1} = 12$
	<u>A1</u>	Obtain $n = 20$ (allow $n \ge 20$)
	3	
$\frac{2(1.1^n-1)}{2(1.1^n-1)} > 200$	B1	State or imply $S_N = \frac{2(1.1^n - 1)}{(1.1 - 1)}$
(1.1-1)		(1.1-1)
$1.1^{n} > 11$	M1	Link (any sign) their attempt at S_N (of a GP)
		to 200 and attempt to solve
$n > \frac{\log 11}{\log 1.1}$	A1	Obtain 26, or 25.2 or better
n > 25.2 ie Day 26	A1	Conclude $n = 26$ only, or equiv eg Day 26
Ž	4	3, 1 5 3
swum = $2 \times 30 = 60 \text{ km}$	B1	Obtain 60 km, or 2 x 30km
$run = \frac{1}{2} \times 30 \times (4 + 29 \times 0.5)$	M1	Attempt sum of AP, $d = 0.5$, $a = 2$, $n = 30$
= 277.5 km		•
$cvcle = 2(1.1^{30} - 1)$	M1	Attempt sum of GP, $r = 1.1$, $a = 2$, $n = 30$
$\frac{1}{(1.1-1)}$		1 , . , . , ,
= 329.0 km		
total = 666 km	A1	Obtain 666 or 667 km
	$u_{20} = 2 \times 1.1^{19} = 12.2$ $u_{19} = 2 \times 1.1^{18} = 11.1$ $\frac{2(1.1^{n} - 1)}{(1.1 - 1)} > 200$ $1.1^{n} > 11$ $n > \frac{\log 11}{\log 1.1}$ $n > 25.2 \text{ie Day 26}$ $\text{swum} = 2 \times 30 = 60 \text{ km}$ $\text{run} = \frac{1}{2} \times 30 \times (4 + 29 \times 0.5)$ $= 277.5 \text{ km}$ $\text{cycle} = \frac{2(1.1^{30} - 1)}{(1.1 - 1)}$ $= 329.0 \text{ km}$	$ \begin{array}{c} = 9 \text{ km} & \qquad \qquad & \boxed{2} \\ u_{20} = 2 \times 1.1^{19} = 12.2 & \qquad & \textbf{B1} \\ u_{19} = 2 \times 1.1^{18} = 11.1 & \qquad & \textbf{A1} \\ \\ & & & & \textbf{M1} \\ & & & & \textbf{A1} \\ \hline & & & & & \textbf{M1} \\ & & & & & \textbf{A1} \\ \hline & & & & & & \textbf{B1} \\ & & & & & & \textbf{M1} \\ & & & & & & \textbf{A1} \\ \hline & & & & & & & \textbf{B1} \\ & & & & & & & \textbf{M1} \\ & & & & & & & & \textbf{A1} \\ & & & & & & & & \textbf{A1} \\ & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & & & & \textbf{A1} \\ & & & & & & & & & & & & & & & & & & $

4723 Core Mathematics 3

1	<u>Eith</u>	er: Obtain $x = 0$ Form linear equation with signs of $4x$ and $3x$ different State $4x - 5 = -3x + 5$ Obtain $\frac{10}{7}$ and no other non-zero value(s)	B1 M1 A1 A1	ignoring errors in working ignoring other sign errors or equiv without brackets or exact equiv
			4	of chact equiv
	<u>Or</u> :	Obtain $16x^2 - 40x + 25 = 9x^2 - 30x + 25$	B1	or equiv
		Attempt solution of quadratic equation	M1	at least as far as factorisation or use of formula
		Obtain $\frac{10}{7}$ and no other non-zero value(s)	A1	or exact equiv
		Obtain 0	B1 4	ignoring errors in working
2	(i)	Show graph indicating attempt at reflection in $y = x$	M1	with correct curvature and crossing negative <i>y</i> -axis and positive <i>x</i> -axis
		Show correct graph with x-coord 2 and y-coord -3		•
		indicated	A1	
	(ii)	Show graph indicating attempt at reflection in <i>x</i> -axis	2 M1	with correct curvature and crossing each
	(11)	Show graph indicating attempt at reflection in x-axis	1411	negative axis
		Show correct graph with x -coord -3 indicated	A1	-
		and <i>y</i> -coord –4 indicated [SC: Incorrect curve earning M0 but both correct interces	A1	cated B1]
		[3C. Incorrect curve earning 1910 but both correct intercep	3	cated B1]
3		Attempt use of product rule	M1	+ form
		Obtain $2x \ln x + x^2 \cdot \frac{1}{x}$	A1	or equiv
		Substitute e to obtain 3e for gradient Attempt eqn of straight line with numerical gradient	A1 M1	or exact (unsimplified) equiv allowing approx values
		Obtain $y - e^2 = 3e(x - e)$	M11 A1√	or equiv; following their gradient provided
		Solution y = Sol(x - y)	7 11 V	obtained by diffn attempt; allow approx values
		Obtain $y = 3ex - 2e^2$	A1	in terms of e now and in requested form
			6	
4	(i)	Differentiate to obtain form $kx(2x^2 + 9)^n$	M1	any constant k ; any $n < \frac{5}{2}$
		Obtain correct $10x(2x^2+9)^{\frac{3}{2}}$	A1	or (unsimplified) equiv
		Equate to 100 and confirm $x = 10(2x^2 + 9)^{-\frac{3}{2}}$	A1 3	AG; necessary detail required
	(ii)	Attempt relevant calculations with 0.3 and 0.4	M1	
	` '	Obtain at least one correct value	A1	x $f(x)$ $x-f(x)$ $f'(x)$
				0.3
		Obtain two correct values and conclude appropriately	A1	noting sign change or showing $0.3 < f(0.3)$ and $0.4 > f(0.4)$ or showing gradients either side of 100
			3	

4723	Mark Schem	е	June 20
	Obtain correct first iterate	B1	finding at least 3 iterates in all answer required to exactly 4 dp
(111)	Carry out correct process	ы М1	finding at least 3 iterates in all
	Obtain 0.3553	A1	answer required to exactly 4 dp
	$[0.3 \rightarrow 0.35953 \rightarrow 0.35497 \rightarrow 0.35528 \rightarrow 0.35575 \rightarrow 0.35528 \rightarrow 0.4 \rightarrow 0.35146 \rightarrow 0.35563 \rightarrow 0.35563 \rightarrow 0.3563 \rightarrow 0.3565 \rightarrow 0.0565 \rightarrow 0.0565 \rightarrow 0.0565 $	0.35532	$\rightarrow 0.35531;$ ($\rightarrow 0.35531);$
5 (a)	Obtain expression of form $\frac{a \tan \alpha}{b + c \tan^2 \alpha}$	M1	any non-zero constants a, b, c
	State correct $\frac{2 \tan \alpha}{1 - \tan^2 \alpha}$	A1	or equiv
	Attempt to produce polynomial equation in $\tan \alpha$	M1	using sound process
	Obtain at least one correct value of $\tan \alpha$	A1	$\tan \alpha = \pm \sqrt{\frac{4}{5}}$
	Obtain 41.8 Obtain 138.2 and no other values between 0 and 180 [SC: Answers only 41.8 or B1; 138.2 or		allow 42 or greater accuracy; allow 0.73 allow 138 or greater accuracy others B1]
	7	6	
(b)(i	State $\frac{7}{6}$	B1	
	i) Attempt use of identity linking $\cot^2 \beta$ and $\csc^2 \beta$	<u>_1</u> 1	or equiv retaining exactness; condone sign
(11	The mixture of identity linking cot p and cosec p	IVII	errors
	Obtain $\frac{13}{36}$	A1 2	or exact equiv
6	Integrate $k_1 e^{nx}$ to obtain $k_2 e^{nx}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their k_1e^{nx}	A1	
	Substitute limits to obtain $\frac{1}{6}\pi(e^3-1)$ or $\frac{1}{6}(e^3-1)$	A1	or exact equiv perhaps involving e ⁰
	Integrate $k(2x-1)^n$ to obtain $k'(2x-1)^{n+1}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their $k(2x-1)^n$	A1	
	Substitute limits to obtain $\frac{1}{18}\pi$ or $\frac{1}{18}$	A1	or exact equiv
	Apply formula $\int \pi y^2 dx$ at least once	B 1	for $y = e^{3x}$ and/or $y = (2x-1)^4$
y ²	Subtract, correct way round, attempts at volumes	M1	allow with π missing but must involve
у	Obtain $\frac{1}{6}\pi e^3 - \frac{2}{9}\pi$	A1 9	or similarly simplified exact equiv
7 (i)	State $A = 42$	B1	
	State $k = \frac{1}{9}$	B1	or 0.11 or greater accuracy
	Attempt correct process for finding m Obtain $\frac{1}{9} \ln 2$ or 0.077	M1 A1	involving logarithms or equiv or 0.08 or greater accuracy
	John 9 111 2 01 0.077	4	or 0.00 or greater accuracy
(ii)	Attempt solution for t using either formula	M1	using correct process (log'ms or T&I or
` '	Obtain 11.3	A1 2	or greater accuracy; allow 11.3 ± 0.1
(iii)	Differentiate to obtain form Be^{mt}	M1	where B is different from A
	Obtain 3.235e ^{0.077t} Obtain 47.9	A1√ A1 3	or equiv; following their A and m allow 48 or greater accuracy

Show at least correct $\cos \theta \cos 60 + \sin \theta \sin 60$ or 8 (i) $\cos \theta \cos 60 - \sin \theta \sin 60$ **B**1 Attempt expansion of both with exact numerical values attempted **M1** and with $\cos 60 \neq \sin 60$ Obtain $\frac{1}{2}\sqrt{3}\sin\theta + \frac{5}{2}\cos\theta$ **A1** or exact equiv 3 Attempt correct process for finding R**M**1 (ii) whether exact or approx Attempt recognisable process for finding α **M1** allowing sin / cos muddles Obtain $\sqrt{7}\sin(\theta + 70.9)$ allow 2.65 for R; allow 70.9 ± 0.1 for α **A1** 3 (iii) Attempt correct process to find any value of θ + their α **M1** Obtain any correct value for θ + 70.9 **A1** -158, -22, 202, 338, ... Attempt correct process to find θ + their α in 3rd quadrant M1 or several values including this or greater accuracy and no other Obtain 131 **A1** [SC for solutions with no working shown: B4; 131 with other answers Correct answer only B2] 4 (i) Attempt use of quotient rule *M1 or equiv; allow u / v muddles Obtain or (unsimplified) equiv; this M1A1 **A1** available at any stage of question Equate attempt at first derivative to zero and rearrange to solvable form **M1** dep *M Obtain $x = \sqrt{5}$ or 2.24 or greater accuracy **A1** Recognise range as values less than y-coord of st pt allowing < here **M1** Obtain $0 \le y \le \frac{3}{2}\sqrt{5}$ **A1** any notation; with \leq now; any exact equiv 6 State $\sqrt{5}$ (ii) B1√ following their x-coord of st pt; condone answer $x \ge \sqrt{5}$ but not inequality with k 1 (iii) Equate attempt at first derivative to −1 and attempt simplification *M1 and dependent on first M in part (i) Obtain $x^4 - 5x^2 + 100 = 0$ **A1** or equiv involving 3 non-zero terms Attempt evaluation of discriminant or equiv **M1** dep *M Obtain -375 or equiv and conclude appropriately **A1**

4724 Core Mathematics 4

1 (a)	$2x^2 - 7x - 4 = (2x+1)(x-4)$ or		
	$3x^2 + x - 2 = (3x - 2)(x + 1)$	B 1	
	$\frac{2x+1}{3x-2}$ as final answer; this answer only	B1	Do not ISW
		2	
(b)	For correct leading term x in quotient	B1	Identity method
	For evidence of correct division process	M1	M1: $x^3 + 2x^2 - 6x - 5 = Q(x^2 + 4x + 1) + R$
	Quotient = $x - 2$	A1	M1: $Q = ax + b$ or $x + b$, $R = cx + d$ & ≥ 2 ops
	Remainder = $x - 3$	A1 4	[N.B. If $Q = x + b$, this $\Rightarrow 1$ of the 2 ops] A2: $a = 1, b = -2, c = 1, d = -3$ SR: $\underline{B}1$ for two
2	Parts with correct split of $u = \ln x$, $\frac{dv}{dx} = x^4$	*M1	obtaining result $f(x) + /- \int g(x) dx$
	$\frac{x^5}{5}\ln x - \int \frac{x^5}{5} \cdot \frac{1}{x} (\mathrm{d}x)$	A1	
	$\frac{x^5}{5}\ln x - \frac{x^5}{25}$	A1	
	Correct method with the limits	dep*	M1 Decimals acceptable here
	$\frac{4e^5}{25} + \frac{1}{25}$ ISW (Not '+c')	A1	Accept equiv fracts; like terms amalgamated
	25 25	5	
3 (i)	$\frac{d}{dx}(x^2y) = x^2 \frac{dy}{dx} + 2xy \text{ or } \frac{d}{dx}(xy^2) = 2xy \frac{dy}{dx} + y^2$	*B1	
	Attempt to solve their differentiated equation for $\frac{dy}{dx}$	dep*	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 - 2xy}{x^2 - 2xy} \text{ only}$	A1	WWW AG Must have intermediate line &
		[2]	could imply "=0" on 1st line
(::\/	(a) Attempt to solve only $y^2 - 2xy = 0$ & derive $y = 2x$	B1	AG Any effort at solving $x^2 - 2xy = 0 \rightarrow B0$
(11)(Clear indication why $y = 0$ is not acceptable	ві В1	Substituting $y = 2x \rightarrow B0$, B0
	Crear indication why y to is not acceptable	2	Substituting $y = 2x \rightarrow b0$, by
(b)	Attempt to solve $y = 2x$ simult with $x^2y - xy^2 = 2$	M1	
. ,	Produce $-2x^3 = 2 \text{ or } y^3 = -8$	A1	AEF
	(-1, -2) or $x = -1, y = -2$ only	A1	
		3	

(i) For (either point) + t(difference between vectors) **M1** r = (3i + 2j + 3k or i + 3j + 4k) + t(-2i + j + k or 2i - j - k) A1

't' can be 's', ' λ ' etc. 'r' must be 'r' but need not be bold Check other formats, e.g. ta + (1-t)b

2

State/imply that their r and their -2i + j + k are perpendicular Consider scalar product = 0

*M1 N.B.This *M1 is dep on M1 being earned in (i) dep*M1

Obtain $t = -\frac{1}{6}$ or $\frac{1}{6}$ or $-\frac{5}{6}$ or $\frac{5}{6}$

A1

Subst their t into their equation of AB

M1

Obtain $\frac{1}{6}(16\mathbf{i} + 13\mathbf{j} + 19\mathbf{k})$

A1 Accept decimals if clear

5

5 (i) $(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2$ ignoring x^3 etc

SR Allow B1 for $1-\frac{1}{2}x+kx^2$, $k \neq -\frac{1}{8}$ or 0 **B2**

 $(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2$ ignoring x^3 etc

SR Allow B1 for $1 - \frac{1}{2}x + kx^2$, $k \neq \frac{3}{8}$ or 0 **B2**

Product = $1-x+\frac{1}{2}x^2$ ignoring x^3 etc

AG; with (at least) 1 intermediate step (cf x^2) **B**1

(ii) $\sqrt{\frac{5}{9}}$ or $\frac{\sqrt{5}}{3}$ seen **B1**

 $\frac{37}{49}$ or $1-\frac{2}{7}+\frac{1}{2}\left(\frac{2}{7}\right)^2$ seen

B1

3

*A1

5

 $\frac{\sqrt{5}}{3} \approx \frac{37}{49} \Rightarrow \sqrt{5} \approx \frac{111}{49}$

B1 **AG**

Produce at least 2 of the 3 relevant equations in t and s 6 (i) Solve for t and s

1 + 2t = 12 + s, 3t = -4s, -5 + 4t = 5 - 2s**M1** M1

(t, s) = (4, -3) AEF Subst (4, -3) into suitable equation(s) & show consistency dep*A1 Either into "3rd" eqn or into all 3 coordinates.

N.B. Intersection coords not asked for

Method for finding magnitude of any vector Method for finding scalar product of any 2 vectors Using $\cos \theta = \frac{\mathbf{a.b}}{|\mathbf{a}||\mathbf{b}|}$ AEF for the correct 2 vectors 137 (136.8359) or 43.2(43.164...)

*M1 Expect $\sqrt{29}$ and $\sqrt{21}$

Expect -18

Should be $-\frac{18}{\sqrt{29}\sqrt{21}}$

A1 2.39 (2.388236...) or 0.753(0.75335...) rads 4

Correct (calc) method for dealing with $\frac{1}{\sin x}$ or $(\sin x)^{-1}$ **M1**

Obtain
$$-\frac{\cos x}{\sin^2 x}$$
 or $-(\sin x)^{-2}\cos x$

Show manipulation to
$$-\csc x \cot x$$
 (or vice-versa)

WWW AG with ≥ 1 line intermed working A1

(ii) Separate variables,
$$\int (-)\frac{1}{\sin x \tan x} dx = \int \cot t dt$$

M1 or
$$\int \frac{1}{\sin x \tan x} dx = \int (-) \cot t dt$$

Style: For the M1 to be awarded, dx and dt must appear on correct sides or there must be
$$\int$$
 sign on both sides

$$\int -\csc x \cot x \, dx = \csc x \quad (+c)$$

A1 or
$$\int \csc x \cot x \, dx = -\csc x$$

$$\int \cot t \, dt = \ln \sin t \quad \text{or } \ln |\sin t|$$

B1 or
$$\int -\cot t \, dt = -\ln \sin t \text{ or } -\ln |\sin t|$$

Subst
$$(t,x) = \left(\frac{1}{2}\pi, \frac{1}{6}\pi\right)$$
 into their equation containing 'c' M1 and a

and attempt to find 'c'

$$\csc x = \ln \sin t + 2 \text{ or } \ln \left| \sin t \right| + 2$$

WWW ISW; cosec $\frac{\pi}{6}$ to be changed to 2 **A1**

5

8 (i)
$$A(t+1) + B = 2t$$

 $A = 2$

M1 Beware: correct values for
$$A$$
 and/or B can be ...

$$A=2$$

 $B=-2$

... obtained from a wrong identity **A1**

A1 Alt method: subst suitable values into given... ...expressions

3

A1

(ii) Attempt to connect
$$dx$$
 and dt
 $dx = t dt$ s.o.i. AEF

M1 But not just
$$dx = dt$$
. As AG, look carefully.

$$x + \sqrt{2x-1} \rightarrow \frac{t^2+1}{2} + t = \frac{(t+1)^2}{2}$$
 s.o.i.

Any wrong working invalidates **B**1

$$\int \frac{2t}{\left(t+1\right)^2} \, \mathrm{d}t$$

AG WWW A1

The 'dt' must be present

(iii)
$$\int \frac{1}{t+1} dt = \ln(t+1)$$

B1 Or parts
$$u = 2t$$
, $dv = (t+1)^{-2}$ or subst $u = t+1$

$$\int \frac{1}{\left(t+1\right)^2} \mathrm{d}t = -\frac{1}{t+1}$$

B1

4

Attempt to change limits (expect 1 & 3) and use f(t)

M1 or re-substitute and use 1 and 5 on g(x)

$$\ln 4 - \frac{1}{2}$$

A1 AEF (like terms amalgamated); if A0 A0 in (i),

then final A0

9 (i) $A: \theta = \frac{1}{2}\pi$ (accept 90°)

 $B: \theta = 2\pi \quad (\text{accept } 360^\circ)$

B2 SR If B0 awarded for point B, allow B1 SR for any angle s.t. $\sin \theta = 0$

arry arre

(ii) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}}$

M1 or $\frac{dy}{d\theta} \cdot \frac{d\theta}{dx}$ Must be used, not just quoted

 $\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2 + 2\cos 2\theta$

B1

B1

3

 $2 + 2 \cos 2\theta = 4 \cos^2 \theta$ with ≥ 1 line intermed work

*B1

3

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\cos\theta}{2 + 2\cos2\theta} \qquad \text{s.o.i.}$

A1 This & previous line are interchangeable

 $= \sec \theta$

dep*A1 WWW AG

(iii) Equating $\sec \theta$ to 2 and producing at least one value of θ M1 degrees or radians

 $(x =) - \frac{2}{3}\pi - \frac{\sqrt{3}}{2}$

A1 'Exact' form required

 $(y=)-2\sqrt{3}$

A1 'Exact' form required

4725 Further Pure Mathematics 1

1 (i) $\begin{pmatrix} 1 & 1 \\ 5 & 1 \end{pmatrix}$	B1	Two elements correct
(3 -1)	B1 2	All four elements correct
(ii) EITHER $ \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -5 & 4 \end{pmatrix} $	B1 B1	Both diagonals correct Divide by determinant
OR	B1 B1	Solve sim. eqns. 1 st column correct 2 nd column correct
2 (i) 5 0.927 or 53.1°	B1 B1 2	Correct modulus Correct argument, any equivalent form
(ii)(a) (b) A(3, 4)	B1 B1 2 B1 B1 B1 3	Circle centre A (3, 4) Through O, allow if centre is (4, 3) Half line with +ve slope Starting at (3, 0) Parallel to OA, (implied by correct arg shown)
3 (i) $\frac{r}{(r+1)!}$	M1 A1 2	Common denominator of $(r + 1)!$ or $r!(r + 1)!$ Obtain given answer correctly
(ii) $1 - \frac{1}{(n+1)!}$	M1 A1 M1 A1 A1 4	Express terms as differences using (i) At least 1 st two and last term correct Show pairs cancelling Correct answer a.e.f.
4	B1 M1 M1 A1 A1 A1	Establish result is true, for $n = 1$ (or 2 or 3) Attempt to multiply A and A ⁿ , or vice versa Correct process for matrix multiplication Obtain 3^{n+1} , 0 and 1 Obtain $\frac{1}{2}(3^{n+1} - 1)$ Statement of Induction conclusion, only if 5 marks earned, but may be in body of working

4725		Mark Scheme	Express as difference of two series Use standard results Correct unsimplified answer
		M.	Emma Life man Standard
5		M1 M1	Express as difference of two series Use standard results
	$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1)$	A1	Correct unsimplified answer
	4 6	M1	Attempt to factorise
		A1	At least factor of $n(n+1)$
	$\frac{1}{12}n(n+1)(3n+2)(n-1)$	A1	Obtain correct answer
	12	6	
6 (i)	3 – i	<u>B1</u>	Conjugate stated
		1	
(ii)	EITHER	M1	Use sum of roots
		A1	Obtain correct answer
		M1	Use sum of pairs of roots
		A1	Obtain correct answer
		M1	Use product of roots
	a = -8, $b = 22$, $c = -20$	A1 6	Obtain correct answers
	OR	M1	Attempt to find a quadratic factor
		A1	Obtain correct factor
		M1	Expand linear and quadratic factors
	a = -8, b = 22, c = -20 OR	A1A	1A1 Obtain correct answers
		M1	Substitute 1 imaginary & the real root into eqn
		M1	Equate real and imaginary parts
		M1	Attempt to solve 3 eqns.
	a = -8, $b = 22$, $c = -20$	A1A	1A1 Obtain correct answers
7 (i)		B1	Enlargement (centre <i>O</i>) scale factor 6
(ii)		<u>I</u> B1	Reflection
(11)		B1	Mirror line is $y = x$
		2	MINIOI IIIIO 15 y x
(:::)			Stratah in u direction
(iii)		B1	Stretch in y direction
		B1 2	Scale factor 6, must be a stretch
(iv)		B1	Rotation
()		B 1	36.9° clockwise or equivalent
		2	T

8	$\alpha + \beta = -k$	B1	State or use correct value
	$\alpha\beta = 2k$	B 1	State or use correct value
		M1	Attempt to express sum of new roots in terms of $\alpha + \beta$, $\alpha\beta$
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$	A1	Obtain correct expression
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{1}{2}(k - 4)$	A1	Obtain correct answer a.e.f.
	$\alpha'\beta'=1$	B 1	Correct product of new roots seen
	$x^2 - \frac{1}{2}(k-4)x + 1 = 0$	B1ft	Obtain correct answer, must be an eqn.
	-	7	
			Alternative for last 5 marks
		M1	Obtain expression for $u = \frac{\alpha}{\beta}$ in terms of k and
			α or k and β
		A1	Obtain a correct expression
		A1	rearrange to get α in terms of u
		M1	Substitute into given equation
		A1	Obtain correct answer
9 (i)		M1	Attempt to equate real and imaginary parts of $(x + iy)^2$ and $5 + 12i$
	$x^2 - y^2 = 5$ and $xy = 6$	A1	Obtain both results
	•	M 1	Eliminate to obtain a quadratic in x^2 or y^2
	$\pm (3 + 2i)$	M1	Solve a 3 term quadratic & obtain x or y
		A1	Obtain correct answers as complex nos.
		5	-
(ii)	5 – 12i		Correct real and imaginary parts
		2	
(iii))	M1	Attempt to solve a quadratic equation
	$x^2 = 5 \pm 12i$	A1	Obtain correct answers
	$x = \pm (3 \pm 2i)$	A1A1	Each pair of correct answers a.e.f.
		4	

10 (i)	M1 Find value of det AB A1 Correct value 2 seen 2
(ii)	 M1 Show correct process for adjoint entries A1 Obtain at least 4 correct entries in adjoint B1 Divide by their determinant
$ (\mathbf{AB})^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 3 & -1 \\ 0 & -1 & 1 \\ 2 & 6 - 3a & a - 6 \end{pmatrix} $	A1 Obtain completely correct answer
(iii) EITHER $\mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ -6 & 2 & -2 \end{pmatrix}$	M1 State or imply $(AB)^{-1} = B^{-1}A^{-1}$ A1 Obtain $B^{-1} = (AB)^{-1} \times A$ M1 Correct multiplication process seen A1 Obtain three correct elements A1 All elements correct
(-6 2 -2) OR	M1 Attempt to find elements of B A1 All correct M1 Correct process for B ¹ A1 3 elements correct A1 All elements correct

2

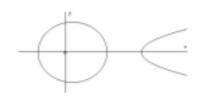
4726 Further Pure Mathematics 2

- Write as $\frac{A}{x-2a} + \frac{Bx+C}{x^2+a^2}$ Get $2ax = A(x^2+a^2) + (Bx+C)(x-2a)$ 1

Choose values of x and/or equate coeff. Get $A = \frac{4}{5}$, $B = \frac{4}{5}$, $C = \frac{2}{5}a$

Accept C=0 **M1**

A1√ Follow-on for *C*=0


Must lead to at least one of their A,B,C**M1**

A1 For two correct from correct working only

A1 For third correct

5

- Get (4,0), (3,0), (-2,0) only **B1**
- Get $(0,\sqrt{5})$ as "maximum" **B**1

Meets x-axis at 90° at all crossing points **B**1

Use $-2 \le x \le 3$ and $x \ge 4$ only **B1**

Symmetry in Ox **B**1

5

Quote/derive $dx = \frac{2}{1+t^2} dt$ 3

Replace all x and dx from their expressions

Tidy to $2/(3t^2+1)$

Get $k \tan^{-1}(At)$

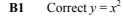
Get $k = \frac{2}{3}\sqrt{3}$, $A = \sqrt{3}$

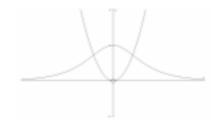
Use limits correctly to $^{2}/_{9}\sqrt{3\pi}$

B1

M1 Not dx=dt; ignore limits

Not $a/(3t^2+1)$ **A1**


M1 Allow A=1 if from $p/(t^2+1)$ only


A1√ Allow $k=a/\sqrt{3}$ from line 3; AEEF

AEEF A1

6

4 (i)

Correct shape/asymptote **B1**

Crossing (0,1)

- Define sech $x = 2/(e^x + e^{-x})$ Equate their expression to x^2 and attempt to simplify Clearly get A.G.
- 3 **B**1 **AEEF**
- **M1**

B1

<u>A1</u> 3

(iii) Cobweb Values > and then < root

- **B**1 **B**1
 - Only from cobweb
- 2

				Or use $\tan^n x = \tan^{n-2} x \cdot \tan^2 x$ Allow wrong sign Quote or via substitution Must be clearly derived
47	'26	Mark Scheme		June 20. Pathy
5	(i)	Factorise to $\tan^{n-2}x(1+\tan^2x)$ Clearly use $1+\tan^2 = \sec^2$ Integrate to $\tan^{n-1}x/(n-1)$ Use limits and tidy to A.G.	B1 M1 A1 A1	Or use $\tan^n x = \tan^{n-2} x \cdot \tan^2 x$ Allow wrong sign Quote or via substitution Must be clearly derived
	(ii)	Get $3(I_4 + I_2) = 1$, $I_2 + I_0 = 1$ Attempt to evaluate I_0 (or I_2) Get $\frac{1}{4}\pi$ (or $1 - \frac{1}{4}\pi$) Replace to $\frac{1}{4}\pi - \frac{2}{3}$	M1 A1 A1 4	Write down one correct from reduction formula $I_2=a \tan x + b$, $a,b\neq 0$
6	(i)	Attempt to use N-R of correct form with clear f $'(x)$ used Get 2.633929, 2.645672	M1 A1 A1√ 3	For one correct to minimum of 6 d.p. For other correct from their x_2 in correct NR
	(ii)	√7	B1 1	Allow ±
	(iii)	Get $e_1 = 0.14575$, $e_2 = 0.01182$ Get $e_3 = 0.00008$ Verify both ≈ 0.00008	B1√ B1√ B1 3	From 0.000077 or 0.01182 ³ /0.14575 ²
7	(i)	Attempt quotient/product on bracket $Get -3/(2+x)^2$ Use Formulae Booklet or derive from $tanh y = (1-x)/(2+x)$ $Get \frac{-3}{(2+x)^2} \cdot \frac{1}{1-((1-x)/(2+x))^2}$ Clearly tidy to A.G. $Get f''(x) = 2/(1+2x)^2$	M1 A1 M1 A1√ A1 B1 6	May be implied Attempt $tanh^{-1}$ part in terms of x From their results above
	(ii)	Attempt f(0), f'(0) and f"(0) Get $\tanh^{-1} \frac{1}{2}$, -1 and 2 Replace $\tanh^{-1} \frac{1}{2} = \frac{1}{2} \ln 3 \ (=\ln \sqrt{3})$ Get $\ln \sqrt{3} - x + x^2$	M1 A1√ B1 A1 4	Use reasonable ln definition M1 Get $y=\frac{1}{2}\ln((1-k)/(1+k))$ for $k=(1-x)/(1+2x)$ A1 Tidy to $y=\frac{1}{2}\ln(3/(1+2x))$ A1 Attempt chain rule M1 Clearly tidy to A.G. A1 Get $f''(x)$ B1 From their differentiation Only Use standard expansion from $\frac{1}{2}\ln 3 - \frac{1}{2}\ln(1+2x)$

			my 13
4726	Mark Sc	cheme	June 20 June 2
8 (i)	Attempt to solve $r = 0$ Get $\alpha = \frac{1}{4}\pi$	M1 A1 2	June 20. The true of the state
(ii) ((a)Get $1 - \sin((2k+1)\pi - 2\theta)$ Expand as $\sin(A+B)$ Use k as integer so $\sin(2k+1)\pi = 0$, And $\cos(2k+1)\pi = -1$	M1 M1 M1	Attempt $f(\frac{1}{2}(2k+1)\pi - \theta)$, leading to 2θ here Or discuss periodicity for general k Needs a clear explanation
	And $\cos(2k+1)h = -1$ (b) Quote $\frac{1}{4}(2k+1)\pi$	3 B1	For general answer or 2 correct (ignore
(Select or give $k = 0,1,2,3$	B1 B1 2	other answers given) For all 4 correct in $0 \le \theta < 2\pi$
roughly	(iii)		B1 Correct shape; 2 branches only, as shown
		B1 B1 B1	Clear symmetry in correct rays Get max. $r = 2$ At $\theta = \sqrt[3]{4\pi}$ and $\sqrt[7]{4\pi}$; both required (allow correct answers not in $0 \le \theta < 2\pi$ here)
9 (i)	Attempt to use parts Divide out $x/(1+x)$ Correct answer $x\ln(1+x) - x + \ln(1+x)$ Limits to correct A.G.	M1 M1 A1 A1 4	Two terms, one yet to be integrated Or use substitution
		SC SC	Quote $\int \ln x dx$ M1 Clear use of limits to A.G. Attempt to diff ate by product rule Clear use of limits to A.G. A1
(ii) ((a)Use sum of areas of rect.< Area under curve (between limits 0 and 70) Areas = 1x heights = 1(ln2 + ln3+ln70)	B1 B1	Areas to be specified
(b	Explain use of 69 Explain first rectangle Areas as above > area under curve	2 B1 B1 B1 3	Allow diagram or use of left shift of 1 unit
(c)) Show/quote $\ln 2 + \ln 3 + \ln 70 = \ln 70!$ Use $N = 69$, 70 in (i)	B1 M1	No other numbers; may be implied by 228.39 or 232.65 seen; allow 228.4, 232.6 or 232.7
	Get 228.3, 232.7	A1 3	

4727 Further Pure Mathematics 3

1 (a)(i)	e, r^3, r^6, r^9	M1	For stating e , r^m (any $m cdots 2$), and 2 other different elements in terms of e and r
		A1 2	For all elements correct
(ii)	r generates G	B1 1	For this or any statement equivalent to: all elements of G are included in a group with e and r OR order of r > order of all possible proper subgroups
(b)	m, n, p, mn, np, pm	B1	For any 3 orders correct
		B1 2	For all 6 correct and no extras (Ignore 1 and <i>mnp</i>)
2	METHOD 1		
	$[1,3,2] \times [1,2,-1]$	M1	For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation
	$\mathbf{n} = k[-7, 3, -1] \ OR \ 7x - 3y + z = c \ (= 17)$	A1	For correct vector <i>OR</i> LHS of equation
	$\theta = \sin^{-1} \frac{ [1, 4, -1] \cdot [-7, 3, -1] }{\sqrt{1^2 + 4^2 + 1^2} \sqrt{7^2 + 3^2 + 1^2}}$	M1√	For using correct vectors for line and plane f.t. from normal
	$\sqrt{1^2 + 4^2 + 1^2} \sqrt{7^2 + 3^2 + 1^2}$	M1* M1	For using scalar product of line and plane vectors For calculating both moduli in denominator
	$\theta = \sin^{-1} \frac{6}{\sqrt{18}\sqrt{59}} = 10.6^{\circ}$	A1√ (*dep)	For scalar product. f.t. from their numerator
	(10.609°, 0.18517)	A1 7	For correct angle
	METHOD 2		
	$[1, 3, 2] \times [1, 2, -1]$	M1	For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation
	$\mathbf{n} = k[-7, 3, -1] \ OR \ 7x - 3y + z = c$	A1	For correct vector OR LHS of equation
	7x - 3y + z = 17	M1√	For attempting to find RHS of equation f.t. from n or LHS of equation
	$d = \frac{ 21 - 12 + 2 - 17 }{\sqrt{7^2 + 3^2 + 1^2}} = \frac{6}{\sqrt{59}}$	M1	For using distance formula from a point on the line, e.g.
	$\sqrt{7^2 + 3^2 + 1^2}$ $\sqrt{59}$	A1√	(3, 4, 2), to the plane For correct distance. f.t. from equation
	$\theta = \sin^{-1} \frac{\frac{6}{\sqrt{59}}}{\sqrt{1^2 + 4^2 + 1^2}} = 10.6^{\circ}$	M1 A1	For using trigonometry For correct angle
	(10.609°, 0.18517)		
		7	
3 (i)	$\frac{\mathrm{d}z}{\mathrm{d}x} = 1 + \frac{\mathrm{d}y}{\mathrm{d}x}$	M1	For differentiating substitution (seen or implied)
	$\frac{\mathrm{d}z}{\mathrm{d}x} - 1 = \frac{z+3}{z-1} \Rightarrow \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{2z+2}{z-1} = \frac{2(z+1)}{z-1}$	A1 A1 3	For correct equation in z AEF For correct simplification to AG
(ii)	$\int \frac{z-1}{z+1} \mathrm{d}z = 2 \int \mathrm{d}x$	B1	For $\int \frac{z-1}{z+1} (dz)$ and $\int (1) (dx)$ seen or implied
	$\Rightarrow \int 1 - \frac{2}{z+1} dz \ OR \int 1 - \frac{2}{u} du = 2x (+c)$	M1	For rearrangement of LHS into integrable form OR substitution e.g. $u = z + 1$ or $u = z - 1$
	$\Rightarrow z - 2\ln(z+1) OR z+1-2\ln(z+1) $ $= 2x (+c)$	A1	For correct integration of LHS as $f(z)$
	$\Rightarrow -2\ln(x+y+1) = x-y+c$	A1 4	For correct general solution AEF

4 (i)	$\cos^5 \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^5$
-------	---

B1 For $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ seen or implied

z may be used for $e^{i\theta}$ throughout

$$\cos^5 \theta = \frac{1}{32} \left(e^{i \theta} + e^{-i \theta} \right)^5$$

M1 For expanding $\left(e^{i\theta} + e^{-i\theta}\right)^5$. At least 3 terms and

2 binomial coefficients required *OR* reasonable attempt at expansion in stages

$$\cos^5 \theta = \frac{1}{32} \left(e^{5i\theta} + e^{-5i\theta} + 5 \left(e^{3i\theta} + e^{-3i\theta} \right) + 10 \left(e^{i\theta} + e^{-i\theta} \right) \right)$$

A1 For correct binomial expansion

$$\cos^5 \theta = \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta)$$
^M
^A

For grouping terms and using multiple angles For answer obtained correctly **AG**

(ii)
$$\cos \theta = 16 \cos^5 \theta$$

For stating correct equation of degree 5

$$OR 1 = 16\cos^4\theta$$
 AEF

$$\Rightarrow \cos \theta = 0$$
, $\cos \theta = \pm \frac{1}{2}$

M1 For obtaining at least one of the values of $\cos \theta$ from $\cos \theta = k \cos^5 \theta$ OR from $1 = k \cos^4 \theta$

$$\Rightarrow \theta = \frac{1}{2} \pi, \frac{1}{3} \pi, \frac{2}{3} \pi$$

A1 A1 for any two correct values of θ

A1 4 A1 for the 3rd value and no more in
$$0$$
,, θ ,, π

Ignore values outside 0,, θ ,, π

5 (i)	METHOD 1		
	Lines meet where		
	$(x =) k + 2\lambda = k + \mu$	M1	For using parametric form to find where lines meet
	$(y =) -1 - 5\lambda = -4 - 4\mu$	A1	For at least 2 correct equations
	$(z =) 1-3\lambda = -2\mu$		
	(-)	M1	For attempting to solve any 2 equations
	$\Rightarrow \lambda = -1, \mu = -2$	A1	For correct values of λ and μ
		D.1	For attempting a check in 3rd equation
		B1	OR verifying point of intersection is on both lines
	$\Rightarrow (k-2,4,4)$	A1 6	For correct point of intersection (allow vector)
			SR For finding λ <i>OR</i> μ and point of intersection, but no check, award up to M1 A1 M1 A0 B0 A1
	METHOD 2		
	$d = \frac{ [0, 3, 1] \cdot [2, -5, -3] \times [1, -4, -2] }{ \mathbf{b} \times \mathbf{c} }$		For using $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ with appropriate vectors (division
	$a = \frac{ \mathbf{b} \times \mathbf{c} }{ \mathbf{b} \times \mathbf{c} }$		by $ \mathbf{b} \times \mathbf{c} $ is not essential)
	$d = c[0, 3, 1] \cdot [-2, 1, -3] = 0$	B1	and showing $d = 0$ correctly
	$\Rightarrow \text{ lines intersect}$		
	Lines meet where		
	$(x =) (k+) 2\lambda = (k+) \mu$	M1	For using parametric form to find where lines meet
	$(y =) -1 - 5\lambda = -4 - 4\mu$	A1	For at least 2 correct equations
	$(z =) 1-3\lambda = -2\mu$		•
	(2) 1 3.0	M1	For attempting to solve any 2 equations
	$\Rightarrow \lambda = -1, \mu = -2$	A1	For correct value of λ OR μ
	$\Rightarrow (k-2,4,4)$	A1	For correct point of intersection (allow vector)
		711	Tor correct point of intersection (unlow vector)
	METHOD 3		
	e.g. $x-k = \frac{2(y+1)}{-5} = \frac{y+4}{-4}$	M1	For solving one pair of simultaneous equations
	$\Rightarrow y = 4$	A1	For correct value of x , y or z
	$\frac{z-1}{-3} = \frac{y+1}{-5}$	M1	For solving for the third variable
	-3 -5		
	$x = k - 2 \ OR \ z = 4$	A1	For correct values of 2 of x , y and z
	$x-k = \frac{z}{-2}$ checks with $x = k - 2$, $z = 4$	B1	For attempting a check in 3rd equation
	$\Rightarrow (k-2, 4, 4)$	A1	For correct point of intersection (allow vector)
(ii)	METHOD 1		
	$\mathbf{n} = [2, -5, -3] \times [1, -4, -2]$	M1	For finding vector product of 2 directions
	$\mathbf{n} = c[-2, 1, -3]$	A1	For correct normal
	. , , ,		SR Following Method 2 for (i),
			award M1 A1 $$ for n , f.t. from their n
	(1, -1, 1) OR (1, -4, 0) OR (-1, 4, 4)	M1	For substituting a point in LHS
	$\Rightarrow 2x - y + 3z = 6$	A1 4	For correct equation of plane AEF cartesian
	METHOD 2		
	$\mathbf{r} = [1, -1, 1] + \lambda[2, -5, -3] + \mu[1, -4, -2]$	M1	For using vector equation of plane $(OR [1, -4, 0])$ for
			a)
	$x = 1 + 2\lambda + \mu$,
	$y = -1 - 5\lambda - 4\mu$	A1	For writing 3 linear equations
	$z = 1 - 3\lambda - 2\mu$		
	•	M1	For eliminating λ and μ
	$\Rightarrow 2x - y + 3z = 6$	A1	For correct equation of plane AEF cartesian
	, 2x y 1 32 = 0		1 of soffeet equation of plane That cartesian
		10	

6 (i)	When a, b have opposite signs,	M1	For considering sign of $a b $ OR $b a $ in general or in a specific case
	$a b = \pm ab$, $b a = \mp ba$ \Rightarrow $a b \neq b a $	A1 2	For showing that $a b \neq b a $
			Note that $ x = \sqrt{x^2}$ may be used
(ii)	$(a \circ b) \circ c = (a b) \circ c = a b c OR a bc $	M1	For using 3 distinct elements and simplifying $(a \circ b) \circ c$ OR $a \circ (b \circ c)$
a o	$(b \circ c) = a \circ (b c) = a b c = a b c OR a bc $	A1 M1 A1 4	For obtaining correct answer For simplifying the other bracketed expression For obtaining the same answer
(iii)		B1*	For stating $e = \pm 1$ OR no identity
	EITHER $a \circ e = a \mid e \mid = a \implies e = \pm 1$	M1	For attempting algebraic justification of +1 and -1 for <i>e</i>
	$OR e \circ a = e a = a$ $\Rightarrow e = 1 \text{ for } a > 0, \ e = -1 \text{ for } a < 0$	A1	For deducing no (unique) identity
	Not a group	B1 (*dep)	For stating not a group
		4 10	

7 (i)

Polar or cartesian values of ω and ω^2 may be used anywhere in this question

For showing 3 points in approximately correct

Allow ω and ω^2 interchanged, or unlabelled

(ii) EITHER $1+\omega+\omega^2$

$$=$$
 sum of roots of cubic $=$ 0

M1

M1

A1

B1

For result shown by any correct method AG

$$OR \quad \omega^3 = 1 \Rightarrow (\omega - 1)(\omega^2 + \omega + 1) = 0$$

$$\Rightarrow 1 + \omega + \omega^2 = 0 \text{ (for } \omega \neq 1)$$

OR sum of G.P.

$$1 + \omega + \omega^2 = \frac{1 - \omega^3}{1 - \omega} \left(= \frac{0}{1 - \omega} \right) = 0$$

shown on Argand diagram or explained in terms of

Reference to vectors in part (i) diagram may be made

$$1 + \operatorname{cis} \frac{2}{3}\pi + \operatorname{cis} \frac{4}{3}\pi = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 0$$

 $(2+\omega)(2+\omega^2) = 4 + 2(\omega + \omega^2) + \omega^3$ (iii) (a)

M1 For using
$$1 + \omega + \omega^2 = 0$$
 OR values of ω , ω^2

$$=4-2+1=3$$

(b)
$$\frac{1}{2+\omega} + \frac{1}{2+\omega^2} = \frac{2+(\omega+\omega^2)+2}{3} = 1$$

For combining fractions OR multiplying top and bottom of 2 fractions by complex conjugates

For correct answer f.t. from (a)

For the cubic $x^3 + px^2 + qx + r = 0$ (iv)

METHOD 1

$$\sum \alpha = 2 + 1 = 3 \ (\Rightarrow p = -3)$$

For calculating two of
$$\sum \alpha$$
, $\sum \alpha \beta$, $\alpha \beta \gamma$

$$\sum \alpha \beta = \frac{2}{2+\omega} + \frac{2}{2+\omega^2} + \frac{1}{3} = \frac{7}{3} \ (=q)$$

For calculating all of
$$\sum \alpha$$
, $\sum \alpha \beta$, $\alpha \beta \gamma$

$$\alpha\beta\gamma = \frac{2}{3} \iff r = -\frac{2}{3}$$

OR all of
$$p$$
, q , r
A1 For at least two of $\sum \alpha$, $\sum \alpha \beta$, $\alpha \beta \gamma$ correct

$$\Rightarrow 3x^3 - 9x^2 + 7x - 2 = 0$$
METHOD 2

$$\left(x-2\right)\left(x-\frac{1}{2+\omega}\right)\left(x-\frac{1}{2+\omega^2}\right)=0$$

$$x^3 + \left(-2 - \frac{1}{2 + \omega} - \frac{1}{2 + \omega^2}\right)x^2$$

For multiplying out LHS in terms of ω or $\operatorname{cis} \frac{1}{3} k \pi$

$$+\left(\frac{1}{\left(2+\omega\right)\left(2+\omega^{2}\right)}+\frac{2}{2+\omega}+\frac{2}{2+\omega^{2}}\right)x$$

$$-\frac{2}{\left(2+\omega\right)\left(2+\omega^2\right)}=0$$
 M1

For simplifying, using parts (ii), (iii) or values of ω

$$\Rightarrow x^3 - 3x^2 + \frac{7}{3}x - \frac{2}{3} = 0$$

For at least two of
$$p$$
, q , r correct

$$\Rightarrow 3x^3 - 9x^2 + 7x - 2 = 0$$

11

xiliary
onstants in not been
± 0
ation

4728 Mechanics 1

1(i)	900a = 600 - 240		M1	N2L with difference of 2 forces, accept 360
	$a = 0.4 \text{ ms}^{-2}$	AG	A1	
			[2]	
(ii)	9 = 5 + 0.4t		M1	v = u + 0.4t or $v = u + (cv 0.4)t$
	t = 10 s		A1	
	$9^2 = 5^2 + 2x0.4s$		M1	or $s=(u+v)t/2$ or $s=ut+0.5xcv(0.4)t^2$
	s = 70 m		A1	
			[4]	

2(i)	Resolves a force in 2 perp. directions	M1*	Uses vector addition or subtraction
	Uses Pythagoras $R^2 =$	D*M1	Uses cosine rule $R^2 =$
	$(14\sin 30)^2 +$	A1	$14^2 + 12^2$ -
	$(12+14\cos 30)^2$	A1	2x14x12cos150
	$\{ \text{or } R^2 = (12\sin 30)^2 + (14+12\cos 30)^2 \}$		
	R = 25.1 AG	A1	cso (Treat $R^2 = 14^2 + 12^2 + 2x14x12\cos 30$
(ii)		[5]	as correct)
	Trig to find angle in a valid triangle	M1	Angle should be relevant
	tanB=7/24.1,sinB=7/25.1,cosB=24.1/25.	A1	sinB/14 = sin150/25.1. Others possible.
	$B = 016, (0)16.1^{\circ} \text{ or } (0)16.2^{\circ}$	A1	Cosine rule may give (0)16.4, award A1
		[3]	

3(i)	a = 6/5 $a = 1.2 \text{ ms}^{-2}$	M1 Acceleration is gradient idea, for portion of graph	
	$a = 1.2 \text{ ms}^{-2}$	A1 Accept 6/5	
(ii)		[2]	
	$s = (6x10/2)$ {or $(6x5/2)$	M1 Area under graph idea or a formula used correctly	
	x2 x4}	M1 Double {Quadruple} journey	
(iii)	s = 60 m	A1	
		[3]	
		M1 v=u+at idea, t not equal to 17 (except v=1.2t-24)	
	v = -6 + 1.2(17-15) $v = -3.6 \text{ ms}^{-1}$	A1 $0 = v + cv(1.2)(20-17), v^2 - 2.4v - 21.6 = 0$, etc	
	$v = -3.6 \text{ ms}^{-1}$	A1 SR v=3.6 neither A1, but give both A1 if final answer	.
		[3] given is -3.6	

4(i)		M1	Difference of 2 horizontal components, both < 15
	$F = 15\sin 50 - 15\sin 30 = 3.99 \text{ N}$	A1	Not 4 or 4.0
	Left	B1	Accept reference to 30 degree string
		[3]	May be given in ii if not attempted in i
(ii)		M1	Equating 4 vertical forces/components
	$R = f(30, 15\cos 50, 15\cos 30)$	A1	30g is acceptable
	$R = 30-15\cos 50-15\cos 30$	A1	=7.36(78), treat 30g as a misread
	$\mu = 3.99/7.36(78)$	M1	Using F = μ R, with cv(3.99) and cv(7.36(78))
	$\mu = 0.541 \text{ or } 0.542 \text{ or } 0.543$	A1	Accept 0.54 from correct work, e.g. 4/7.4
		[5]	

5(i)	2400x5 - 3600x3	B1	Award if g included
	2400v + 3600v	B1	Award if g included
	2400x5 - 3600x3 = 2400v + 3600v	M1	Equating momentums (award if g included)
	$v = 0.2 \text{ ms}^{-1}$	A1	Not given if g included or if negative.
	В	B1	
		[5]	
(ii)(a)	+/-(-2400v + 3600v)	B1	No marks in(ii) if g included
	2400x5 - 3600x3 = -2400v + 3600v	M1	Equating momentums if "after" signs differ
	$v = 1 \text{ ms}^{-1}$	A1	Do not accept if - sign "lost"
(b)	I = 2400 x (5+/-1) or 3600 x (3+/-1) $I = 14400 \text{ kgms}^{-1}$	M1	Product of either mass and velocity change
	$I = 14400 \text{ kgms}^{-1}$	A1	Accept -14400
		[5]	

	1 2 2		
6(i)	$x = 0.01t^4 - 0.16t^3 + 0.72t^2.$		
	v = dx/dt	M1	Uses differentiation, ignore +c
	$v = 0.04t^3 - 0.48t^2 + 1.44t$.	A1	or $v = 4(0.01t^3) - 3(0.16t^2) + 2(0.72t)$
	$v(2)=1.28 \text{ ms}^{-1}$ AG	A1	Evidence of evaluation needed
		[3]	
(ii)	a = dv/dt	M1	Uses differentiation
	$a = 0.12t^2 - 0.96t + 1.44$	A1	or $a = 3(0.04t^2) - 2(0.48t) + 1.44$
	$t^2 - 8t + 12 = 0$ AG	A1	Simplifies $0.12t^2 - 0.96t + 1.44 = 0$, (or verifies the roots
		[3]	of QE make acceleration zero)
(iii)	(t-2)(t-6)=0	M1	Solves quadratic (may be done in ii if used to find $v(6)$)
	t=2	A1	Or Factorises v into 3 linear factors M1
	t=6	A1	$v = 0.04t(t-6)^2$ A1 Identifies $t=6$ A1
	$v(6) = 0 \text{ ms}^{-1}$	B1	Evidence of evaluation needed
		[4]	
(iv)		B1	Starts at origin
		B1	Rises to single max, continues through single min
		B1	Minimum on t axis, non-linear graph
	Away from A	B1	
		[4]	
(v)	$AB = 0.01x6^4 - 0.16x6^3 + 0.72x6^2$	M1	Or integration of $v(t)$, with limits 0, 6 or substitution,
	AB = 4.32 m	A1	using cv(6) from iii
		[2]	

		[4]	
7(:)	(D-)0 2v0 9aaa45	N/1	Not $F = 0.2x9.8\cos 45$ or $0.2x9.8\sin 45$ unless followed
7(i)	(R=)0.2x9.8cos45	M1	
	F=1xR=1x.2x9.8cos45=1.386 N AG		by (eg) $Fr = 1x F = 1.386$ when M1A1
		[2]	
(ii)	Any 1 application of N2L // to plane	M1	Must use component of weight
	with correct mass and number of forces		
	0.4a=0.2gsin45+0.2gsin45-1.38(592)	A 1	
	$a = 3.465 \text{ ms}^{-2}$ AG	A 1	
	0.2a = 0.2gsin45 - T or		Accept with 3.465 (or close) instead of a
	$0.2a = T + [0.2g\sin 45 - 1.38(592)]$	M1	Accept omission of [term] for M1
	T = 0.693 N	A 1	Accept 0.69
		[5]	
	OR	[-]	
	Any 1 application of N2L // to plane		
	with correct mass and number of forces		Must use component of weight
		M1	Either correct
	$0.2a = 0.2g\sin 45 - T$ or		
	$0.2a = T + [0.2g\sin 45 - 1.38(592)]$	A1	Both correct. Accept omission of [term] for A1 only
	Eliminates a or T	M1	
	$a = 3.465 \text{ ms}^{-2}$ AG	A1	
	T = 0.693 N	A1	
(iii)	$v^2 = 2 \times 3.465 \times 0.5$	M1	Using $v^2 = 0^2 + 2xcv(3.465)s$
(111)	$v = 1.86 \text{ ms}^{-1}$	A1	2.100/5
	V 1.00 IIIS	[2]	
(iv)	For Q	[-]	
(14)	$(0.2)a = (0.2)g\sin 45 - (1)(0.2)g\cos 45.$	M1	Attempting equation to find a for Q
		A1	Accept from 0.2gsin45 - 1.386
	[]	B1	
	T = (3/1.86) = 1.6(12)	ы	Accept 2 sf
	For P	D1	2-602
	$a = 9.8\sin 45$	B1	a = 6.93
	$2.5 = 1.86(14)t + 0.5 \times (9.8\sin 45)t^{2}$	M1	Using $2.5 = \text{cv}(1.86)\text{t} + 0.5\text{cv}(6.93)\text{t}^2$ [not 9.8 or 3.465]
	t = 0.6(223)	A1	Accept 1sf
	time difference $1.612 - 0.622 = 0.99(0)$ s	A1	Accept art 0.99 from correct work
1	I I	[7]	I and the second

4729 Mechanics 2

1	200cos35°	B1	
	200cos35° x d = 5000 d = 30.5 m	M1 A1 3	3

2	$0.03R = \frac{1}{2} \times 0.009(250^2 - 150^2)$	M1	$150^2 = 250^2 + 2a \times 0.03$	
	0.03R	B1	$a = \pm 2x10^6/3 \text{ or } \pm 666,667$	(A1)
	either K.E.	B1	F = 0.009a	(M1)
	R = 6000 N	A1 4	unit errors	4

3 (i)	D = 12000/20	B1	
	12000/20=k x 20 + 600 x 9.8 x 0.1	M1	
	k = 0.6	A1 3	AG
(ii)	$16000/v = 0.6v + 600 \times 9.8 \times 0.1$	M1	
	$0.6 \text{ v}^2 + 588\text{v} - 16000 = 0$	M1	attempt to solve quad. (3 terms)
	$v = 26.5 \text{ m s}^{-1}$	A1 3	
(iii)	$16000/32 - 0.6 \times 32 = 600a$	M1	
		A1	
	$a = 0.801 \text{ m s}^{-2}$	A1 3	0.80 or 0.8 9

4 (i)	$0 = 35\sin\theta \times t - 4.9t^2$	M1	R=u ² sin2θ/g only ok if proved
	$t = 35\sin\theta/4.9 \qquad 50\sin\theta/7$	A1	or 70sinθ/g aef
	$R = 35\cos\theta x t$ aef	B1	
			their t
	$R = 35^2 \sin\theta \cdot \cos\theta/4.9$	M1	
			eliminate t
	$R = 125\sin 2\theta$	A1 5	
			AG
(ii)	$110 = 125\sin 2\theta$	M1	
	$\theta = 30.8^{\circ} \text{ or } 59.2^{\circ}$	A1+1	
	t = 3.66 s or 6.13 s	A1+1 5	10

5 (i)	3/8 x 3 (1.125)	B1		c.o.m. hemisphere	
	$0.53d = 5x0.02 + (10 + 3/8x3) \times 0.5$	M1		0.53e=3x5/8x0.5+8x0.02+13x.01	
		A1		0.53f=3x3/8x0.5-5x0.02-10x0.01	
	d = 10.7	A1	4	AG (e = 2.316 f = 0.684)	
(ii)	Attempt to calc a pair relevant to P,G	M1		distance / angle	
	OP=0.9 (pair), p= 73.3° q=16.7° r=76.9°	A1		not a complimentary pair	
	(77.2°) , s=13.1° (12.8°) AC=0.86,				
	BC=0.67, AD=10.4 BD=10.2				
	r > p , s < q , p + s < 90 ,	M1		make relevant comparison	
	0.67 < 0.86 , 10.2 < 10.4			0.7 < 0.9 (OG < OP) 10.7 < 10.9	
	it is in equilibrium	A1	4		8

Mark Scheme

4729	M	ark Sch	neme		June 20	Nymaths cloud com
6 (i)	$T\cos 60^{\circ} = S\cos 60^{\circ} + 4.9$ $T\sin 60^{\circ} + S\sin 60^{\circ} = 0.5 \times 3^{2}/0.4$	M1 A1 M1 A1		Resolving vertically nb for M1: (must be components – all 4 cases) Res. Horiz. $mr\omega^2$ ok if $\omega \neq 3$ If equal tensions $2T=45/4$ M1 only		Iscloud.com
	$(S + 9.8)\sin 60^{\circ} + S\sin 60^{\circ} = 45/4$ S = 1.60 N T = 11.4 N	M1 A1 A1	7			
(ii)	Tcos60° = 4.9 T = 9.8 Tsin60° = 0.5 x 0.4 ω ² ω = 6.51 rad s ⁻¹	M1 A1 M1 A1 A1	5	Resolving vertically (component) Resolving horiz. (component) or 6.5	12	

7 (i)	$u = 3 \text{ m s}^{-1}$	B1		
	6 = 2x + 3y	M1		
		A1		
	e = (y - x)/3	M1		
		A1	$(e = \frac{2}{3})$ (equs must be consistent)	
	y=2	A1 6	AG	
(ii)	$v_h = 2$	B1	or (B1) $\frac{1}{2}$ mx2 ²	
	$(v_v)^2 = 2 \times 9.8 \times 4$	M1	$(B1) \frac{1}{2} mxv^2$	
	$v_v = 8.85$ $(14\sqrt{10/5})$	A1		
			(B1) mx9.8x4	
	speed = $(8.85^2 + 2^2)$	M1	$v = \sqrt{(2^2 + 2x9.8x4)}$	
	9.08 m s^{-1}	A1		
	$\tan^{-1}(8.85/2)$	M1	or $\cos^{-1}(2/9.08)$	
	77.3° to horizontal	A1 7	12.7° to vertical	13

8 (i)	com of Δ 3 cm right of C	B1			
	(48+27)x = 48x4 + 27x11	M1			
	(40+21)W +0X4 + 27X11	A1			
	$\frac{1}{x} = 6.52$	A1			
	com of Δ 2 cm above AD	B1			
	(48+27) y = 48x3 + 27x2	M1			
	(48+27)y = 40x3+27x2	A1			
	$\frac{-}{y} = 2.64$	A1	8		
(ii)	14F	B1		can be implied e.g. 7/sin30°. F	
	3gcos30° x 6.52	B1		7.034 (AG) or (6.52-2.64tan30°)	
	3gsin30° x 2.64	В1		52.0° (GAH) or (above)xcos30°	
				(5.00)xcos30° (4.33)	
	14F=3gcos30°x6.52-3gsin30°x2.64	M1		$14F = 3x9.8x7.034x\cos 52.0^{\circ}$	
	F = 9.09 N	A1	5		13

4730 Mechanics 3

1	(i) T	$= (1.35 \text{mg})(3 - 1.8) \div 1.8$	B1		
	[0.9 mg = m]	na]	M1		For using $T = ma$
	Acceleration	n is 8.82ms ⁻²	A1	3	
	(ii) In:	itial EE =			
		$(1.35\text{mg})(3-1.8)^2 \div (2x^2)$	1.8) B1		
	$[\frac{1}{2} \text{ mv}^2 = 0$ Speed is 3.	.54mg]	M1		For using $\frac{1}{2}$ mv ² = Initial EE
	Speed is 3.	25ms ⁻¹	A1	3	

2	(i)	M1		For using NEL vertically
	Component is 8esin27°	A1		
	Component is 2.18ms ⁻¹	A1	3	
	(ii) Change in velocity vertically =			
	$8\sin 27^{\circ}(1+e)$	B1ft		ft 8sin27° + candidate's ans. in (i)
				For using $ I = m \times change in$
	$ I = 0.2 \times 5.81$	M1		velocity
				ft incorrect ans. in (i) providing
	Magnitude of Impulse is 1.16 kgms ⁻¹	A1ft	3	both M marks are scored.

3				For using the principle of conservation of momentum in the
		M1		i direction
	$0.8x12\cos 60^{\circ} = 0.8a + 2b$	A 1		
		M1		For using NEL
	$0.75 \times 12 \cos 60^{\circ} = b - a$	A1		-
				For eliminating b; depends on at
	[4.8 = 0.8a + 2(a + 4.5)]	DM1		least one previous M mark
	a = -1.5	A1		1
	Comp. of vel. perp. to l.o.c. after impact is			
	$12\sin 60^{\circ}$	B1		
				For correct method for speed or
		M1		direction
	The speed of A is 10.5ms ⁻¹	A1ft		ft $v^2 = a^2 + 108$
	1			Accept $\theta = 81.8^{\circ}$ if θ is clearly
				and appropriately indicated;
	Direction of A is at 98.2° to 1.o.c.	Alft	10	ft tan ⁻¹ $\theta = (12\sin 60^{\circ})/ a)$

4	(i) $[\text{mgsin}\alpha - 0.2\text{mv} = \text{ma}]$	M1		For using Newton's second law
	$5\frac{dv}{dt} = 28 - v$	A1		AG
	$\left[\int \frac{5}{28 - v} dv = \int dt\right]$	M1		For separating variables and integrating
	(C) - $5\ln(28 - v) = t$	A1 M1		For using $v = 0$ when $t = 0$
		IVI I		ft for $\ln[(28 - v)/28] = t/A$ from
	ln[(28 - v)/28] = -t/5 [28 - v = 28e ^{-t/5}]	A1ft		C + Aln(28 - v) = t previously
	$[28 - v = 28e^{-t/5}]$	M1		For expressing v in terms of t
	, re			ft for $v = 28(1 - e^{t/A})$ from
	$v = 28(1 - e^{-t/5})$	A1ft	8	ln[(28 - v)/28] = t/A previously
	(ii)			For using $a = (28 - v(t))/5$ or $a =$
				$d(28 - 28e^{-t/5})dt$ and substituting
	$[a = 28e^{-2}/5]$	M1		t = 10.
				ft from incorrect v in the form
	Acceleration is 0.758ms ⁻²	A1ft	2	$a + be^{ct}$ ($b \neq 0$); Accept 5.6/ e^2

5	(i)			For taking moments about B or about A for the whole or For taking moments about X for the whole and using $R_A + R_B =$
		M1		280 and $F_A = F_B$
	$1.4R_A = 150x0.95 + 130x0.25$ or			
	$1.4R_B = 130x1.15 + 150x0.45$ or			
	$1.2F - 0.9(280 - R_B) + 0.45x150 - 1.2F +$			
	$0.5R_{B}$	A 1		
	-0.25x130 = 0			
	$R_A = 125N$	A1		AG
	$R_{\rm B} = 155N$	B1	4	
	(ii)			For taking moments about X for
		M1		XA or XB
	$1.2F_A = -150x0.45 + 0.9R_A$ or			
	$1.2F_{B} = 0.5R_{B} - 130x0.25$	A1		
	F_A or $F_B = 37.5N$	A1ft		$F_B = (1.25R_B - 81.25)/3$
	F_B or $F_A = 37.5N$	B1ft	4	
	(iii) Horizontal component is 37.5N to the			ft H = F or H = $56.25 - 0.75$ V or
	left	B1ft		12H = 325 + 5V
				For resolving forces on XA
	$[Y + R_A = 150]$	M1		vertically
	Vertical component is 25N upwards	A1ft	3	ft $3V = 225 - 4H$ or $V = 2.4H$ -65

6	(i)			For applying Newton's second law
	[0.36 - 0.144x = 0.1a]	M1		11 7 6
	$\ddot{x} = 3.6 - 1.44x$	A1		
	$\ddot{y} = -1.44y$ → SHM or $d^2(x-2.5)/dt^2 = -1.44(x-2.5)$ → SHM	B1		
		M1		For using $T = 2\pi/n$
	Of period 5.24s	A1	5	AG
	(ii) Amplitude is 0.5m	B1 M1		For using $v^2 = n^2(a^2 - y^2)$
	$0.48^2 = 1.2^2(0.5^2 - y^2)$	A1ft		
	Possible values are 2.2 and 2.8	A1	4	
	(iii) $[t_0 = (\sin^{-1} 0.6)/1.2; t_1 = (\cos^{-1} 0.6)/1.2]$	M1		For using $y = 0.5\sin 1.2t$ to find t_0 or $y = 0.5\cos 1.2t$ to find t_1
	$t_0 = 0.53625 \dots \text{ or } t_1 = 0.7727 \dots$	A1		Principal value may be implied
	(a) $[2(\sin^{-1}0.6)/1.2 \text{ or } (\pi - 2\cos^{-1}0.6)/1.2]$	M1		For using $\Delta t = 2t_0$ or $\Delta t = T/2 - 2t_1$
	Time interval is 1.07s	A1ft		ft incorrect t_0 or t_1
	(b)			From $\Delta t = T/2 - 2t_0$ or $\Delta t = 2t_1$; ft 2.62 – ans(a) or
	Time interval is 1.55s	B1ft	5	incorrect t_0 or t_1

7	(i)	M1		For using KE gain = PE loss
	$\frac{1}{2}$ mv ² = mga(1 - cos θ)	A1		
	$aw^2 = 2g(1 - \cos\theta)$	B1	3	AG From $v = wr$
	(ii)			For using Newton's second law
				radially (3 terms required) with accel
		M1		$= v^2/r$ or w^2r
	$mv^2/a = mgcos \theta - R \text{ or } maw^2 = mgcos \theta - R$	A1		
				For eliminating v^2 or w^2 ; depends on
	$[2mg(1-\cos\theta) = mg\cos\theta - R]$	DM1		at least one previous M1
	$R = mg(3\cos\theta - 2)$	A1ft	4	ft sign error in N2 equation
	(iii)			For using Newton's second law
	[mgsin θ = m(accel.) or			tangentially or
	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$			differentiating
	$2a(\theta)\theta - 2g\sin\theta(\theta)$	M1		$aw^2 = 2g(1 - \cos \theta)$ w.r.t. t
	Accel. $(=a\ddot{\theta}) = g\sin\theta$	A 1		- '
	$[\theta = \cos^{-1}(2/3)]$	M1		For using $R = 0$
				ft from incorrect R of the form
				$mg(Acos \Box +B), A \neq 0, B \neq 0;$
	Acceleration is 7.30ms ⁻²	A1ft	4	accept g $\sqrt{5}/3$
	(iv)			For using rate of change =
		M1		$(dR/d\theta)(d\theta/dt)$
	$\frac{10}{10}$			ft from incorrect R of the form
	$dR/dt = (-3 \operatorname{mgsin} \theta) \sqrt{2g(1 - \cos \theta)/a}$	A1ft		$mg(Acos \Box +B), A \neq 0$
		M1		For using $\cos \theta = 2/3$
				Any correct form of \dot{R} with
	Data of shange is $\sqrt{10 \text{ g}} \text{ Ng}^{-1}$			$\cos\theta = 2/3$ used; ft with \Box from
	Rate of change is - $mg \sqrt{\frac{10 \text{ g}}{3 \text{ a}}} \text{ Ns}^{-1}$			incorrect R of the form $mg(A\cos\Box)$
	γυμ	A1ft	4	+B), $A \neq 0$, $B \neq 0$
				: 5), 11 / 0, 5 / 0

4731 Mechanics 4

	D (C 1	3.61		
1	By conservation of angular momentum $1.5 \times 21 + I_G \times 36 = 1.5 \times 28 + I_G \times 34$	M1 A1A1		Give A1 for each side of the equation or $1.5(28-21) = I.(36-34)$
	$I_G = 5.25 \text{ kg m}^2$	A1	4	or $1.5(28-21) = I_G(36-34)$
2 (i)	Using $\omega_1^2 = \omega_0^2 + 2\alpha\theta$, $0^2 = 8^2 + 2\alpha(2\pi \times 16)$	M1		
	$\alpha = -\frac{1}{\pi} = -0.318$	A1	2	$Accept - \frac{1}{\pi}$
	Angular deceleration is 0.318 rads ⁻²			
(ii)	Using $\omega_1^2 = \omega_0^2 + 2\alpha\theta$, $\omega^2 = 8^2 + 2\alpha(2\pi \times 15)$	M1		or $0^2 = \omega^2 + 2\alpha(2\pi)$
	$\omega = 2 \text{ rad s}^{-1}$	A1 ft	2	ft is $\sqrt{64-60\pi \alpha }$ or $\sqrt{4\pi \alpha }$ Allow A1 for $\omega = 2$ obtained using
				Allow A1 for $\omega = 2$ obtained using $\theta = 16$ and $\theta = 15$ (or $\theta = 1$)
(iii)	Using $\omega_1 = \omega_0 + \alpha t$, $0 = \omega + \alpha t$	M1		or $2\pi = 0t - \frac{1}{2}\alpha t^2$
	$t = 2\pi = 6.28 \text{ s}$	A1 ft	2	ft is $\frac{\omega}{ \alpha }$ or $\sqrt{\frac{4\pi}{ \alpha }}$ Accept 2π
3	$A = \int_0^3 (2x + x^2) \mathrm{d}x$	M1		Definite integrals may be evaluated by calculator (i.e with no working shown)
	$= \left[x^2 + \frac{1}{3}x^3 \right]_0^3 = 18$	A1		
	$A\overline{x} = \int_0^3 x(2x + x^2) \mathrm{d}x$	M1		
	$= \left[\frac{2}{3}x^3 + \frac{1}{4}x^4 \right]_0^3 = \frac{153}{4} = 38.25$	M1		Integrating and evaluating (dependent on previous M1)
	$\overline{x} = \frac{38.25}{18} = \frac{17}{8} = 2.125$	A1		
	$A\overline{y} = \int_{0}^{3} \frac{1}{2} (2x + x^{2})^{2} dx$	M1		or $\int_{0}^{15} (3 - (\sqrt{y+1} - 1)) y dy$
	$= \int_0^3 (2x^2 + 2x^3 + \frac{1}{2}x^4) \mathrm{d}x$	M1		Arranging in integrable form
	$= \left[\frac{2}{3}x^3 + \frac{1}{2}x^4 + \frac{1}{10}x^5 \right]_0^3 = 82.8$	M1		Integrating and evaluating SR If ½ is missing, then M0M1M1A0
	$\overline{y} = \frac{82.8}{18} = 4.6$	A1	9	can be earned for \overline{y}

4 (i)	6.3 50°	B1	Correct velocity triangle
	$w^2 = 6.3^2 + 10^2 - 2 \times 6.3 \times 10\cos 50^\circ$	M1	
	$w = 7.66 \text{ ms}^{-1}$	A1	
	$\frac{\sin \alpha}{1} = \frac{\sin 50^{\circ}}{1}$	M1	This mark cannot be earned from work
	6.3 w $\alpha = 39.04^{\circ}$ ($\beta = 90.96^{\circ}$)		done in part (ii)
	Bearing is $205-\alpha = 166^{\circ}$	A1	
		5	
	OR $\begin{pmatrix} 6.3\sin 75 \\ 6.3\cos 75 \end{pmatrix} - \begin{pmatrix} 10\sin 25 \\ 10\cos 25 \end{pmatrix} = \begin{pmatrix} 1.859 \\ -7.433 \end{pmatrix}$ M1A1		
	M1		Finding magnitude or direction
	$w = \sqrt{1.859^2 + 7.433^2} = 7.66$ A1		
	Bearing is $180 - \tan^{-1} \frac{1.859}{7.433} = 166^{\circ}$ A1		
(ii)	As viewed from B	B1 ft	Diagram showing path of A as viewed from B May be implied Or B1 for a correct (ft) expression for d^2 in terms of t
	$d = 2500 \sin 14.04$	M1	or other complete method
	= 607 m	A1 3	Accept 604.8 to 609
		3	SR If $\beta = 89^{\circ}$ is used, give A1 for 684.9 to 689.1

		T	T
5 (i)	$V = \int_{a}^{4a} \pi(a x) \mathrm{d}x$	M1	(Omission of π is an accuracy error)
	$= \left[\frac{1}{2} \pi a x^2 \right]_a^{4a} = \frac{15}{2} \pi a^3$	M1	
	Hence $m = \frac{15}{2} \pi a^3 \rho$	M1 M1	For $\int y^4 dx$
	$I = \sum_{1} \frac{1}{2} (\rho \pi y^{2} \delta x) y^{2} = \int_{1} \frac{1}{2} \rho \pi y^{4} dx$	A1	For Jy dx
	$= \int_{a}^{4a} \frac{1}{2} \rho \pi a^2 x^2 \mathrm{d}x$	A1 ft	Substitute for y^4 and correct limits
	$= \left[\frac{1}{6} \rho \pi a^2 x^3 \right]_a^{4a} = \frac{21}{2} \rho \pi a^5$	A1	
	$= \frac{7}{5} (\frac{15}{2} \pi a^3 \rho) a^2 = \frac{7}{5} m a^2$	A1 (ag) 8	
(ii)	MI about axis, $I_A = \frac{7}{5}ma^2 + ma^2$	M1	Using parallel axes rule
	$=\frac{12}{5}ma^2$	A1	
	Period is $2\pi \sqrt{\frac{I}{mgh}}$	M1	
	$=2\pi\sqrt{\frac{\frac{12}{5}ma^{2}}{mga}}=2\pi\sqrt{\frac{12a}{5g}}$	A1 ft 4	ft from any I with $h = a$
6 (i)	$I = \frac{1}{3} m \{ a^2 + (\frac{3}{2} a)^2 \} + m (\frac{1}{2} a)^2$	M1 M1	MI about perp axis through centre Using parallel axes rule
	$= \frac{13}{12}ma^2 + \frac{1}{4}ma^2 = \frac{4}{3}ma^2$	A1 (ag) 3	osing paramet area tare
(ii)	By conservation of energy	M1	Equation involving KE and PE
	$\left \frac{1}{2} \left(\frac{4}{3} m a^2 \right) \omega^2 - \frac{1}{2} \left(\frac{4}{3} m a^2 \right) \frac{9g}{10a} \right = mg \left(\frac{1}{2} a - \frac{1}{2} a \times \frac{3}{5} \right)$	A1	
	$\frac{2}{3}ma^2\omega^2 - \frac{3}{5}mga = \frac{1}{5}mga$		
	$\omega^2 = \frac{6g}{5a}$	A1 (ag) 3	
(iii)	$mg\cos\theta - R = m(\frac{1}{2}a)\omega^2$	M1	Acceleration $r\omega^2$ and three terms
	$mg \times \frac{3}{5} - R = \frac{3}{5}mg$	A1	(one term must be R) $SR mg \cos \theta + R = m(\frac{1}{2}a)\omega^2 \Rightarrow R = 0$
	R = 0	A1 (ag)	$\begin{array}{c c} SK & mg \cos \theta + K - m(\frac{1}{2}u)w \implies K - \theta \\ \\ earns & M1A0A1 \end{array}$
	$mg\left(\frac{1}{2}a\sin\theta\right) = I\ \alpha$	M1A1	Applying $L = I\alpha$
	$\alpha = \frac{3g}{10a}$	A1	
	$mg\sin\theta - S = m(\frac{1}{2}a)\alpha$	M1A1	Acceleration $r\alpha$ and three terms
	$S = \frac{4}{5} mg - \frac{3}{20} mg$		(one term must be S) or $S(\frac{1}{2}a) = I_G \alpha = \frac{13}{12}ma^2\alpha$
	$=\frac{13}{20}mg$	A1 9	16 w 12 mm w

7 (i)	U = 3mgx + 2mg(3a - x)	B1B1	Can be awarded for terms listed
	$+\frac{mg}{2a}(x-a)^2 + \frac{2mg}{2a}(2a-x)^2$	B1B1	separately
	$=\frac{mg}{2a}(3x^2 - 8ax + 21a^2)$	M1	Obtaining $\frac{dU}{dr}$
	$\frac{\mathrm{d}U}{\mathrm{d}x} = 3mg - 2mg + \frac{mg}{a}(x-a) - \frac{2mg}{a}(2a-x)$	A1	(or any multiple of this)
	$=\frac{3mgx}{a}-4mg$		
	When $x = \frac{4}{3}a$, $\frac{dU}{dx} = 4mg - 4mg = 0$		
	so this is a position of equilibrium	A1 (ag)	
	$\frac{d^2U}{dx^2} = \frac{3mg}{a}$	M1	
	dx^2 a > 0 , so equilibrium is stable	A1 (ag)	
	70, so equinorium is stable	/11 (ug)	
(ii)	KE is $\frac{1}{2}(3m)v^2 + \frac{1}{2}(2m)v^2$	M1A1	
	Energy equation is $U + \frac{5}{2}mv^2 = \text{constant}$		
	Differentiating with respect to t	M1	Differentiating the energy equation
	$\left(\frac{3mgx}{a} - 4mg\right)\frac{\mathrm{d}x}{\mathrm{d}t} + 5mv\frac{\mathrm{d}v}{\mathrm{d}t} = 0$	A1 ft	(with respect to t or x)
	$\frac{3gx}{a} - 4g + 5\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = 0$	A1 ft	
	Putting $x = \frac{4}{3}a + y$, $\frac{3gy}{a} + 5\frac{d^2y}{dt^2} = 0$	M1A1 ft	Condone \ddot{x} instead of \ddot{y}
	$\frac{d^2y}{dt^2} = -\frac{3g}{5a}y$		Award M1 even if KE is missing
	Hence motion is SHM	A1 (ag)	Must have $\ddot{y} = -\omega^2 y$ or other
	with period $2\pi \sqrt{\frac{5a}{3g}}$	A1	satisfactory explanation
	V 28	9)

4732 Probability & Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding

Penalise over-rounding only once in paper.

Penalise	over-rounding only once in paper.		
1(i)	(a) -1	B1	allow \approx -1 or close to -1
			not "strong corr'n", not -0.99
	(b) 0	B1 2	allow ≈ 0 or close to 0
			not "no corr'n"
(ii)	4 3 2 1 or 1 2 3 4	M1	Ranks attempted, even if opp
()	1 3 4 2 4 2 1 3	A1	Transfer of the second
	Σd^2 (= 14)	M1	Dep M1 or $S_{xy} = 23^{-100}/_4$ or $S_{xx} = S_{yy} = 30^{-100}/_4$
		M1	Dep 2^{nd} M1 S_{xy} $//(S_{xx}S_{yy})$
	$1 - 6\Sigma d^2 \over 4(4^2 - 1)$		- F
	= -0.4 oe	A1 5	
Total	0.4 OC	7	
Total	⁷ C v ⁸ C	M1	$^{7}\text{C}_{2} \times ^{8}\text{C}_{3}$ or 1176 : M1
2(i)	$\frac{{}^{2}\underline{C}_{2}}{{}^{15}\underline{C}_{5}}$	I	
	C ₅	M1	$(\text{Any C or P})^{15}\text{C}_5$: M1 (dep < 1)
			or $\frac{7}{15} \times \frac{6}{14} \times \frac{8}{13} \times \frac{7}{12} \times \frac{6}{11}$ or 0.0392: M1
			\times 5 C ₂ or \times 10 : M1 (dep \geq 4 probs mult)
	56. 1176.	A1 3	$^{\wedge}$ C ₂ OI $^{\wedge}$ IO . IVII (dep \geq 4 probs mult)
	$= \frac{56}{143}$ or $\frac{1176}{3003}$ or 0.392 (3sfs)	AI 3	:C2 - 2 4 MD M1M1
	21 21 3D 2D		if 2↔3, treat as MR max M1M1
(ii)	$3! \times 2!$ or ${}^{3}P_{3} \times {}^{2}P_{2}$ not in denom	M1	BABAB seen: M1
	= 12	A1 2	120-12: M1A0
		<u> </u>	$NB^{4!}/_{2!} = 12: M0A0$
Total		5	
3(i)(a)	0.9368 or 0.937	B1 1	
(b)	$0.7799 - 0.5230$ or ${}^{8}C_{5} \times 0.45^{3} \times 0.55^{5}$	M1	Allow 0.9368 – 0.7799
	= 0.2569 or 0.2568 or 0.257	A1 2	
(c)	0.7799 seen	1	${}^{8}C_{5}x0.45{}^{3}x0.55{}^{5} + {}^{8}C_{4}x0.45{}^{4}x0.55{}^{4} + {}^{8}C_{3}x\ 0.45{}^{5}\ x\ 0.55{}^{3}: M2$
	-0.0885 (not $1-0.0885$)	M1	1 term omitted or wrong or extra: M1
	= 0.691 (3 sfs)	A1 3	
(ii)(a)	$^{10}\text{C}_2 \times (^{7}/_{12})^8 \times (^{5}/_{12})^2 \text{seen}$	M1	or 0.105 seen, but not ISW for A1
	= 0.105 (3 sfs)	A1 2	
(b)	$2^{31}/_{72}$ or $^{175}/_{72}$ or 2.43 (3 sfs)	B1 1	$NB^{12}/_5 = 2.4$: B0
Total	, , ,	9	
4(i)	$^{1}/_{20} \times ^{1}/_{10} \text{ or } ^{1}/_{200} \text{ or } 0.005$	M1	
()	x 2	M1dep	
	$= \frac{1}{100}$ or 0.01	A1 3	
(ii)	$E(X) = 0 + 50x^{1}/_{10} + 500x^{1}/_{20}$ or	M1	or eg 20 goes: $2 \times £0.50 + £5.00$
()	$0+0.5x^{1}/_{10}+5x^{1}/_{20}$	A1	= £6.00
	$= 30p$ $= £0.30 \text{ or } ^{3}/_{10}$	M1	$(\text{``£6.00''} + 20 \times \text{£0.20}) \div 20$
	Charge " $30p$ " + $20p$ or $0.3 + 0.2$	****	condone muddled units eg 0.3 + 20
		A1 4	Condone maddled diffe of 0.5 · 20
	= 50p or 0.50 or 0.5	111 7	x = 20, 70, 520 : M1A1
	•		$20^{17}/_{20} + 70^{17}/_{10} + 520^{17}/_{20} : M1$
			$\begin{vmatrix} 20 & 720 & 70 & 710 & 320 & 720 & 1011 \\ = 50 & A1 & A$
			AI AI
			x, (x-50), (x-500) : M1A1
			x, $(x - 30)$, $(x - 300)$. MIAI $x \times \frac{17}{20} + (x - 50) \times \frac{1}{10} + (x - 500) \times \frac{1}{20} = 20$:
			M1
			x = 50 : A1
			T ((C22 (4-22
			Ignore "£" or "p"
Total		7	

4732	Mark S	Scheme	June 20. The string country of the constraints of
4702	Mark	CHOINE	Julio 250 Africa
5(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 2	or 12C2 / 22C2
(ii)	$7/_{15} \times {}^{6}/_{14} \times {}^{8}/_{13}$ or ${}^{8}/_{65}$ oe × 3 oe = ${}^{24}/_{65}$ or 0.369 (3 sfs)	M1 M1 A1 3	3 x prod any 3 probs (any C of F)/ C_3 . M1 (dep <1) $1-(^8/_{15}x^7/_{14}x^6/_{13}+3\times ^8/_{15}x^7/_{14}x^7/_{13}+^7/_{15}x^6/_{14}x^5/_{13}) :$ M2
(iii)	$\frac{x}{45} \times \frac{x-1}{44} = \frac{1}{15}$ oe	M1	one prod omitted or wrong: M1 not $\frac{x}{45} \times \frac{x}{44} = \frac{1}{15}$ or $\frac{x}{45} \times \frac{x}{45} = \frac{1}{15}$ or $\frac{x}{45} \times \frac{x-1}{45} = \frac{1}{15}$
	$x^2 - x - 132 = 0$ or $x(x - 1) = 132$	A1	oe
	$(x-12)(x+11) = 0$ or $x = \frac{1 \pm \sqrt{(1^2 - 4 \times (-132))}}{2}$	M1	ft 3-term QE for M1 condone signs interchanged allow one sign error
	No. of $Ys = 12$	A1 4	Not $x = 12$ or -11 ans 12 from less wking, eg $12 \times 11 = 132$ or T & I: full mks
			Some incorrect methods:
			$\frac{x}{45} \times \frac{x-1}{44} = \frac{1}{15}$ oe M1 $x^2 + x = 132$ A0
			x = 11 M1A0 $12 \times 11 = 132$ M1A1M1
			x = 12 and (or "or") 11 A0
Total		9	NB 12 from eg 12.3 rounded, check method

6(i)(a)	256	B1	1	
				(i)(b) & (ii)(abc): ISW
				ie if correct seen, ignore extras
(b)	Total unknown or totals poss diff	B1	1	pie chart shows only proportions oe
	or Y13 may be smaller or similar			or no. of students per degree may differ
	or size of pie chart may differ			not "no. of F may be less"
				not "Y13 may be larger"
(ii)(a)	B&W does not show frequencies oe	В1	1	or B&W shows spread or shows mks or M lger range
(b)				1 mk about overall standard, based on median or on F's IQR being "higher"
				1 mk about spread (or range or IQR) or about skewness.
				must be overall, not indiv mks
				must be comparison, not just figures
				Examples:
	F generally higher or median higher F higher on average or F better mks			not F higher mean
	F IQR is above M IQR	B1		
	F more compact M wide(r) range or gter IQR			not M have hiest and lowest mks
	or gter variation or gter variance			
	or more spread or less consistent M evenly spread or F skewed	B1	2	condone F +ve skew
	A 1			D 0 W -ll
(c)	Advantage:			not B&W shows skewness
	B&W shows med or Qs or IQR or range or hiest & lowest or key values	B1		not B&W shows info at a glance not B&W easier to compare data sets
	of filest & fowest of key values	Di		not B&W shows mean
				not B&W shows spread
				not B&W easier to calculate or easier to read
	Disadvantage:			ADOM 1
	B&W loses info' B&W shows less info'			not B&W does not give indiv (or raw) data not B&W does not show mean
	B&W snows less into B&W not show freqs			not be w does not snow mean
	B&W not show mode			
	B&W: outlier can give false impression			
	hist shows more info			not hist shows freq for each mark
	hist shows freqs or fds			not hist shows all the results
	hist shows modal class (allow mode) hist			not hist shows total
	shows distribution better			
	can calc mean from hist	B1	2	allow adv of hist as disadv of B&W
(iii)	$102 \times 51 + 26 \times 59$	M1		or 5202 + 1534 or 6736
	$\begin{array}{c} \div 128 \\ -52.6 (3 \text{ efg}) \end{array}$	M1d A1		
Total	= 52.6 (3 sfs)	A1 10	3	
า บเสเ		10	U	

			m A
4732	Mark S	cheme	June 20. The state of implied by $0.7^r \times 0.3$ or $0.3^r \times 0.7$ Allow $0.7^4 \times 0.3$ 1- $(0.3+0.3\times 0.7^++0.3\times 0.7^5)$ not 1- 0.7^6
			180%
	Geo stated 0.7 ³ x 0.3 029/10000 oe or 0.103 (3 sfs)	M1 M1 A1 3	or implied by $0.7^r x 0.3$ or $0.3^r x 0.7$ Allow $0.7^4 \times 0.3$
(ii) 0 =	0.7° alone = 0.118 (3 sfs)	M1 A1 2	$1-(0.3+0.3\times0.7++0.3\times0.7^5)$ not $1-0.7^6$
	0.7 ⁹ 0.7 ⁹ 0.960 (3 sfs)	M1 M1 A1 3	not 0.3×0.7^9 allow $1 - 0.7^{10}$ or 0.972 for M1 allow 0.96, if no incorrect wking seen $0.3 + 0.7 \times 0.3 + \dots + 0.7^8 \times 0.3$: M2 1 term omitted or wrong or "correct" extra: M1
5	Bin stated $C_2 \times 0.7^3 \times 0.3^2 \text{ or } 0.8369 - 0.5282$ = 0.3087 or 0.309 (3 sfs)	M1 M1 A1 3	or implied by table or ${}^{n}C_{r}$ or $0.7^{3} \times 0.3^{2}$ or 0.0309
Total	ì	11	
	$\frac{168.6 - \frac{88 \times 16.4}{8}}{\sqrt{(1136 - \frac{88^2}{8})(34.52 - \frac{16.4^2}{8})}}$ = -0.960 (3 sfs)	M2 A1 3	$(=\frac{-11.8}{\sqrt{168 \times 0.9}})$ M1: correct subst in any correct <i>S</i> formula M2: correct substn in any correct <i>r</i> formula allow -0.96, if no incorrect wking seen
	nust refer to, or imply, external constraint on x e.g x is controlled or values of x fixed or chosen allow x is fixed	B1 1	not x is not random not x affects y not x not affected by y not x goes up same amount each time not charge affects no. of vehicles not x not being measured
= y y y	$\frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}}$ = -0.0702 (3 sfs) or - ⁵⁹ / ₈₄₀ or - ^{11.8} / ₁₆₈ $\frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}}$ = -0.0702 (3 sfs) or - ⁵⁹ / ₈₄₀ or - ^{11.8} / ₁₆₈ $\frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}}$ = -0.0702 (3 sfs) or - ⁵⁹ / ₈₄₀ or - ^{11.8} / ₁₆₈	M1 A1 M1 A1 4	ft their S_{xy} and S_{xx} incl $^{168.6}/_{1136}$ if used in (i) or -0.07 if no incorrect wking or $a = ^{16.4}/_{8} - (\text{``-0.0702''}) \times ^{88}/_{8}$ or $^{2371}/_{840}$ oe eg $y = ^{-59}/_{840}x + ^{2371}/_{840}$
\ /\ /	(-0.07" x 20 + "2.8"	M1	0
(b) r	= 1.4(2) million (2 sfs) close to -1 or corr'n is high ust outside given data, so reliable	A1 2 B1	no ft or good corr'n or pts close to line but not if "close to -1, hence unreliable" if r low in (i), ft: "r low" or "poor corr'n" etc or outside given data so unreliable not "reliable as follows trend" not "reliable as follows average" no ft from (iv)(a)
1 ' 1'	on x is indep	B1 B1 2	or x controlled or y depends on x or y not indep dep on not "x on y" r close to -1 so makes little difference: B2
Total		14	, close to 1 so makes fittle difference. B2

4733 Probability & Statistics 2

General: Conclusions to hypothesis tests must acknowledge uncertainty. Thus "time is unchanged" is A0. Similarly, "Significant evidence that time is unchanged" is also A0.

	"	Significant evidence that time is unchanged	" is also A	A 0.	
1	(i)	Biased in favour of those with strong	B2	2	"Biased", "unrepresentative", "not indept" or equiv
		political interest			[but <i>not</i> "not random"] stated, with sensible reason.
					[SR: partial answer, B1]
	(ii)	Obtain list of all pupils	B1		List, can be implied; number serially or randomly,
		Allocate numbers sequentially	B1		not just "number pupils"
		Choose using random numbers	B1	3	Select consistently with method of numbering,
					not just "select randomly"
					[SR: systematic: List B1, every n^{th} B1, random start B1]
	(8)		3.54		[SR: names in a hat: B2]
2	(i)	$\Phi\left(\frac{24-30}{12}\right) - \Phi\left(\frac{20-30}{12}\right)$	M1		Standardise one, allow $\sqrt{12}$, 12^2 , \sqrt{n}
		(/ (/	A1		Both standardisations correct, allow cc here
		$= \Phi(-0.5) - \Phi(-0.833)$	M1		Correct handling of tails [0.3085 – 0.2024]
		= (1 - 0.6915) - (1 - 0.7976) = 0.1061	A1	4	Answer, a.r.t. 0.106, c.a.o.
	(ii)	Not symmetrical (skewed)	M1		Any comment implying not symmetric
		Therefore inappropriate	A1	2	Conclude "not good model" [Partial answer: B1]
3		$H_0: \mu = 28$	B2		Both hypotheses correctly stated; one error, allow
		$H_1: \mu \neq 28$	N/1		wrong or no letter, but not x or t or \bar{x} , B1
		$\sigma^2 = 37.05 \times 40/39 \qquad [= 38]$	M1		Multiply 37.05 or $\sqrt{37.05}$ by $n/(n-1)$ or $\sqrt{[n/(n-1)]}$
		$z = \frac{26.44 - 28}{\sqrt{38/40}} = -1.601$	M1		Standardise with \sqrt{n} , allow $\sqrt{\text{errors}}$, cc, +
	α	$\sqrt{38/40}$	A1		Correct z, a.r.t -1.60 , or $p \in [0.0547, 0.0548]$
		Compare –1.645, or 0.0547 with 0.05	B1		Explicit comparison of z with -1.645 or p with 0.05
	β	Critical value $28 - z\sigma/\sqrt{n}$ [= 26.397]	M1		Allow "±", √ errors, cc, ignore other tail
		z = 1.645	B1		z = 1.645 in CV expression, and compare 26.44
		Compare 26.44 with 26.40	A1√		CV, $$ on their z, rounding to 3 SF correct
		Do not reject H_0 [can be implied]	M1		Needs \sqrt{n} , correct method & comparison, <i>not</i> $\mu = 26.44$
		Insufficient evidence that time taken has	A 1√	8	Conclusion interpreted in context, $\sqrt{\text{ on } z}$,
4	(*)	changed.	M1		C. 1 1: '.1 10 /10 1 = 1
4	(i)	$\frac{53-50}{\sigma/\sqrt{10}}$ < 2.326	A1		Standardise with 10 or $\sqrt{10}$ and Φ^{-1}
		$\sigma/\sqrt{10}$	B1		Both sides same sign, $\sqrt{10}$, don't worry about <
		$\sigma > 4.08$ AG	A1	4	2.326 or 2.33 seen
			711	•	Convincingly obtain $\sigma > 4.08$ to 3 SF, one other step [SR: Substitution: standardise & substitute 4.08 M1;
		[Allow≥]			0.0101 A1; 4.07 or 4.075 tried, M1; full justification A1
	(ii)	P(Type I) = 0.01 used, e.g. Geo(0.01)	M1		Not enough merely to state $p = 0.01$
	(**)	$0.99^4 \times 0.01$	M1		$p^4 \times q$
		= 0.0096	A1	3	Answer, a.r.t. 0.0096
5	(i)		M1		Attempt $\int_{-1}^{1} x^2 f(x) dx$
	` '	$\int_{-1}^{1} \frac{3}{4} (x^2 - x^4) dx = \frac{3}{4} \left[\frac{x^3}{3} - \frac{x^5}{5} \right]^{1} [= 1/5]$			3-1
		L J-1	A1		Correct indefinite integral
		$1/5 - 0^2$	B1		Mean 0 clearly indicated
		= 1/5	A1	4	Answer 1/5 or a.r.t. 0.200, don't need $\mu = 0$
	(ii)	<u></u>			
			B1		Correct graph, don't need $f(x)$ as well. Don't allow if
					graph goes further below axis than "pips".
		(a)	MI		Don't worry too much about exact shape
		(b) Areas equal, more spread out,	M1 A1		Mention areas or total probability Convincing argument, not just "flatter"
		so g _{max} lower	B1dep		Convincing argument, not just "flatter" W greater
		(c) W greater as more spread out	depB1	5	w greaterwith convincing reason

6	(a)	Po(2.375)	M1		Po(19/8) stated or implied
	(u)		M1		One correct Poisson formula, <i>not</i> tables
		$e^{-2.375} \left(\frac{2.375^3}{3!} + \frac{2.375^4}{4!} \right) = 0.2079 + 0.1233$	A1		Complete correct expression, including addition
		,	I	4	
		= 0.3310	A1	4	Answer, a.r.t. 0.331
	(1.)	() 1 OB	D1		[SR: Po(2) or Po(2.4) and tables, M1]
	(b)	(i) $n \text{ large } OR \qquad n > 50$	B1	_	Or equivalent [Allow \leq and \geq throughout]
		$p \text{ small OR} \qquad np < 5$	B1	2	Or equivalent, e.g. $np \approx npq$, or $p < 0.1$
					[Treat " $np < 5$, $npq < 5$ " as single wrong statement]
		(ii) $B(108, \frac{1}{36})$	M1		Correct binomial distribution stated or implied
		30	M1		Po(np), $$ on their n , p
		$\approx Po(3)$	A1		Po(3)
		$1 - P(\le 3) = 1 - 0.6472$	M1		Use Po tables, "1 $-$ ", or correct formula, \pm 1 term,
		= 0.3528	A1	5	e.g. 0.1847; a.r.t. 0.353, allow from exact Binomial
7	(i)	Dropped catches must occur	B1		"independently", in context, allow "random"
'	()	independently of one another and at	B1	2	"Constant average rate", in context
		constant average rate		_	["Singly" doesn't gain B1]
	(ii)	Use: "Reject H ₀ when correct"	M1		Find $P(\ge r)$ where $r > \lambda$, e.g. $P(\ge 6)$ from $Po(2)$
	(11)	Po(10)	M1		Po(10) stated or implied [can be recovered in (iii)]
=		$P(\ge 16) = 1 - P(\le 15) = 1 - 0.9513$	M1		Seek biggest prob < 0.05, e.g. 0.0835 or 0.0166,
l pa		1(210) - 1 - 1(213) - 1 - 0.9313	1011		
ler her		Deale ability 0.0497	A1		allow 0.0293 but no other LH tail
eit]		Probability 0.0487			Answer in range [0.0487, 0.0488], cwd, cwo
<u> </u>	(iii)	$H_0: \lambda = 10 \text{ or } 2 \text{ [or } \mu$]	B2		Hypotheses fully correct, allow λ or μ
l pa		$H_1: \lambda > 10 \text{ or } 2 \text{ [or } \mu$]			[SR: one error, B1, but r or R or x or \overline{x} : B0]
ard		α : $P(\ge 14) = 1 - 0.8645 = 0.1355$	A1		$p \in [0.135, 0.136]$ from Po(10)
3.W.		> 0.05	B1		Compare explicitly with 0.05 or 0.0487
) se		β: Critical region $r ≥ 16$, $p = 0.0487$	A1√		on answer from (ii)
Marks can be awarded in either part		Compare $r = 14$	B1√		
၂ ဒိ		Do not reject H ₀ [can be implied]	M1		Method correct, $\sqrt{\text{ on } p}$, must be upper tail and " \geq "
<u>x</u>		Insufficient evidence of an increase in	A1√	10	Conclusion interpreted in context
\mathbb{Z}		the number of dropped catches			$[SR: P(\le 14) = 0.9165 < 0.95: (B2 M1) A0 B1 M0A0;$
		11			same for $P(> 14)$ or $P(= 14)$
					[SR: N(10,10): (ii) 0.05 M0. (iii) (B2) M1 A0 B1 M0A0]
8	(i)	$H_0: p = 0.4$ or $\mu = 4.8$	B2		Both fully correct, B2.
		$H_1: p > 0.4$ or $\mu > 4.8$			[SR: one error, B1, but x or R or r or \bar{x} : B0]
		B(12, 0.4)	M1		B(12, 0.4) stated or implied, e.g. 0.9972 or 0.9847
		$P(\ge 9) = 1 - 0.9847 = 0.0153$	A1		Or: CR is ≥ 9 and $p \in [0.015, 0.0153]$
		< 0.05	B1√		Explicitly compare with 0.05, or 9 with \geq 9, $$ on $<$
		Reject H_0 [can be implied]	M1		Reject H_0 , $\sqrt{\text{on probability, must be ">"}}$ "
		Significant evidence of increase in		7	Conclusion interpreted in context
		proportion of audience members who	A1√	/	[SR: $P(\le 9)$ or $P(= 9)$ or $P(> 9)$: (B2 M1) A0 B1 M0A0]
		know sponsor's name			[SR: N(4.8, 2.88): (B2) M1 A0 B0 M0A0]
			D1		
	(ii)	N(160, 96)	B1		Normal, mean 160
		(0.5) 1(0	B1		Variance (or SD) 96 [96/400: B2M0]
		$\frac{(x-0.5)-160}{\sqrt{96}} = 1.645$	M1		Standardise unknown with np and \sqrt{npq} or npq , &
		√96	A1		equate to Φ^{-1} ; $\sqrt{96}$ and signs correct, ignore cc
			B1		RHS = 1.645
		Solve to find $x = 176.6$	M1		Solve [implied by 177 or 176.6 or 176.1]
1		Minimum value is 177	A1	7	177 only, from 176.6, CWO [cc error: 6 ex 7]

4734 Probability & Statistics 3

1 (i)	$\frac{1}{99}(6115.04 - \frac{761.2^2}{100})$	M1		AEF
	99 100 =3.240	A1	2	
(ii)	$761.2/100 \pm z\sqrt{(3.24/100)}$ $z = 1.96$	M1 B1		z= 1.282, 1.645, or 1.96
	(7.26,7.96)	A1 :	3	Allow from σ^2 =3.21; allow 7.97 but not from wrong σ . Allow 4 or 5 SF but no more.
(iii)	None necessary, since sample size large enough for sample mean to have a normal			OR:None necessary, <i>n</i> large enough for Central Limit theorem to apply
	distribution	B1	1 [6	5]
2	$(\overline{x}-12.6)/\sqrt{0.1195/10}$	M1 A1		Any variable, correct mean, /10, ignore z All correct
	1.383 seen	B1		
	Solve for variable $\bar{x} \ge 12.75$	M1 A1	_	Allow any symbol ($<$,> $=$) Allow $>$; 12.7 or 12.8 No z seen
	X ≥ 12.73		5 [5]	
3(i)	Choice of newspaper is independent of level			
	of income	B1	1	Or equivalent
 (ii)	Use df=4	B1		May be implied by 13.28 seen or 0.0152
	EITHER: CV 13.28, from df=4 or sig. level Largest significance level is 1%	M1 B1		From tables Accept 0.01
	OR: UseP($\chi^2 > 12.32$)		_	Use of calculator
	Largest significance level is 1.52%	B2	3 [4]	Accept 0.0152
				from df=6: CV 12.59 used ; SL=5% : B0M1B1
4(i)	$\int_0^1 \frac{4}{3} x^3 dx + \int_1^2 \frac{4}{3x^3} dx$ Limits seen anywhere	M1		For both integrals OR 1 - $\int_{2}^{\infty} \frac{4}{3x^3} dx$
	$\left[\frac{x^4}{3}\right]_0^1 + \left[-\frac{2}{3x^2}\right]_1^2$	A1		For both OR $1 - \left[-\frac{2}{3x^2} \right]_2^{\infty}$
	5/6	A1	3	
		3.54		
(ii)	EITHER: $\int_0^1 \frac{4}{3} x^3 dx = \frac{1}{3}$	M1		
	< ½ Modian must avased 1	A1		
	Median must exceed 1 OR:	A1 M1		Attempt to find median
	$m=\sqrt{(4/3)}$	A1		M0 for $1.5^{1/4}$
	> 1 AG	A1	3	Accept 1.15

 (iii)	$\int_{0}^{1} \frac{4}{3} x^{4} dx + \int_{1}^{\infty} \frac{4}{3x^{2}} dx$	M1		Correct form for at least one integral
, ,	$ \begin{array}{ccc} J_0 & 3 & 3_1 & 3_2 \\ [4x^5/15] + [-4/(3x)] & & \\ 1.6 & & & \\ \end{array} $	B1 A1	3	Both integrals correct without limits AEF
(iv)	$E(X^2) = + \int_1^{\infty} \frac{4}{3x} dx$	M1		For second integral
	Second integral = $\left[\frac{4}{3} \ln x\right]_{1}^{\infty}$	A 1		
	This is not finite, (so variance not finite)	A1	3 12]	AEF
5 (i)	Justify a relevant Poisson approximation $E(A)=75\times0.022 \ (=1.65), E(B)=90\times0.025 \ (=2.25)$ Sum of two independent Poisson variables X has a	M1 B1B	81	Using $n > 50$ or n large; $np < 5$ or p small (<0.1) or $np \approx npq$
	Poisson distribution $Mean m = 3.9$	A1 B1	5	Accept Po(3.9)
(ii)	$1 - P(\leq 5)$	M1		Or From Po(m) Accept ≤ 4 ;
	0.1994	A1	2 [7]	OR Exact 1 – sum of at least 5 correct terms From calculator or tables, art 0.20
6 (i)	Use $p_s \pm zs$	M1		
	$z=2.326$ $s = \sqrt{(0.12 \times 0.88/50)}$	B1 A1		Or /49
	(0.013,0.227) Allow limits if penalised in Q1	A1 A1	4	Or (0.012,0.228) from 49
 (ii)	$z(0.12\times0.88/n)^{1/2}$	M1		Any z
	< 0.05	A 1		A 11 a

	
(ii) $z(0.12\times0.88/n)^{1/2}$	M1 Any z
< 0.05	A1 Allow $=$
Solve to obtain	M1 Must contain \sqrt{n}
n > 228.5	A1 Accept =
$n \approx 229 \text{ or } 230$	A1 5 Must be integer
	[9]
7 (i) Each population of test scores should have	OR: Variances equal and normal distns
normal distributions	R1 Context

7 (i) Each population of test scores should have normal distributions	OR: Variances equal and normal distns B B1 Context B	-
with equal variances	B1 2	
(ii) EITHER:Cannot test for normality from data	Not variances are not equal	

(ii)	EITHER:Cannot test for normality from data		Not variances are not equal
	OR: Sample variances are close enough to		
	accept population variances equal	B1	1

(iii)	H ₀ : $\mu_B = \mu_G$, H ₁ : $\mu_B > \mu_G$ $s^2 = (23 \times 86.79 + 17 \times 93.01)/40$ =89.4335 $t = (1238.4/18 - 1526.8/24)/[s^2(18^{-1} + 24^{-1})]^{1/2}$ = 1.758 Use CV of 1.684 1.758 > 1.684 Reject H ₀ and accept there is sufficient evidence at the 5% significance level that teenage boys worry more, on average than teenage girls.	B1 M1 A1 M1 A1 B1 M1	9	For both. No other variables. Allow words Finding pooled estimate of variance May be implied by later value of t With pooled estimate of variance All correct art 1.76, or - Consistent Compare correctly with their CV (t value) Not assertive Ft on their 1.758 SR:Using s^2 = 93.01/18+86.79/24: B1M0A0M1A0A1(for 1.749) B1M1(from 1.645 or 1.684)A1 Max 6/9
			_12]	
8 (i)	$\sum xf/80 = 1.9$ AG $\sum x^2f/80 - 1.9^2$ 1.365 or 1.382	B1 M1 A1		With evidence Or × 80/79
(ii)	Poisson distribution requires equal mean and variance EITHER: No, mean and variance differ significantly OR: Yes, indicated by sample statistics taking into account sampling error	B1 :		May be indicated
(iii)	$e^{-1.9}1.9^3/3!$ ×80	B1 B1		Or from tables
(iv)	Considering sample as random selection of all similar matches H_0 : Poisson suitable model Combine last two cells $0.97^2/11.97+7.73^2/22.73+11.40^2/21.60 + 2.32^2/13.68+5.02^2/10.02 = 11.63$ CV 7.815 $11.63 > 7.815$	B1 B1 M1 A1 A1 B1 *	dep	Any two correct All correct art 11.6 OR p=0.00875 OR 0.00875 < 0.05
	There is sufficient evidence that a Poisson distribution is not a suitable model confirming (or not) the answer to part (ii)			Ft (ii) SR: If last cells not combined: $\chi^2 = 12.3$ M1A1A1 CV=9.448 or p = 0.0152, B1*dep the M1dep*
(v)	E-values or probabilities would change df would increase by 1	B1 B1		Or other valid observation Or CV would change

4735 Statistics 4

1	(i)	Use $P(A) + P(B) - P(A \cap B) \le 1$, $P(A \cap B) = 0$	B1	1	AEF
	(ii) U	Use $P(A B)=P(A \cap B) / P(B)$ Use $P(A \cap B) = 0$ with argument with $x \neq 0$	И1 А1	AEF e.g. 1	Inependent if $(A \cap B) = P(A)P(B) = x^2$, $P(A \cap B) = 0$, $x \neq 0$, so A and B are not indep.
	(iii)	Use $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B)$)		
		$-P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$	M1		Or equivalent. Allow one sign error
		Use $P(A \cap B) = 0$; $P(A \cap B \cap C) = 0$	A1		For both
		$P(B \cap C) = 2x^2$; $P(C \cap A) = 2x^2$	A 1		For both
		Substitute and obtain required result AG	A1	4 (7)	
)	(i)	Wilcoxon test requires a symmetric			
	(1)	distribution not supported by the diagram	B1	1	Or equivalent
	(**)			D.1	N 1 (1 / 1' 2' 0
	(ii)	H_0 : $m = 1.80$, H_1 : $m > 1.80$	3.61	B1	Needs "population median" if word
		Use sign test	M1		
		Number exceeding $1.8 = 20$	A1		
		Use B(30,0.5), P(≥20) Or P(≤10) 0.0494	M1		
			A1		OD: 1 645 ;fN(15 7 5)1 642 1 916
		Compare with 0.05 correctly 2.008	M1		OR: 1.645 if N(15,7.5), $z = 1.643$, 1.816,
					and $OD_{CD}(V > 20)$
		Conclude there is significant evidence that the median time exceeds 1.80 sec	A1√	7 (8)	used; OR CR ($X \ge 20$) ft p or z
		the median time exceeds 1.80 sec	AIV	7 (8)	11 p 01 2
3	(i)	Marginal distribution of X x 0 1 2 3			
		p 0.27 0.23 0.32 0.18	В1		
		1×0.23+2×0.32+3×0.18	M1		
		=1.41	A1	3	
	(ii)	P(Y>X)=0.08+0.05+0.03+0.08+0.06+0.07	M1		
		= 0.37	A1	2	
	(;;;)	Use $P(Y > X \cap X > 0) / P(X > 0)$	M1		
	(111)	P(X > 0) = 0.73	A1		From marginal distribution
		$P(Y>X \cap X>0)=0.08+0.06+0.07$	A1		i ioni marginar distribution
		21/73	A1	4	AEF
	<i>(</i> •) =				
	(iv)	The director cannot conclude independence	M1		Idea that independence implies $cov = 0$
		from cov. So director's conclusion incorrect			but not the reverse
		OR: Eg $P(X=0 \cap Y=0)=0.11$,	M1	A (44)	
		$P(X=0)P(Y=0)=0.27 \times 0.29 \neq P(X=0 \cap Y=0)$	Αl	2 (11)	

Variances seem not to be equal 4 (i)

(ii)

(ii)
$$H_0$$
: $m_M = m_A$, H_1 : $m_M \neq m_A$ "average"

 $R_m = 40, m(m+n+1)-R_m = 72$ M1 W = 40**A**1 CR: $W \le 38$ В1

40 not in CR, so do not reject H₀ M1 Insufficient evidence that median times differA1 B1 Both hypotheses, AEF. Not

> Both found A0 if no or wrong 72

From M(0)=1

Elimination or substitution

Allow any variables

Ft E(*S*)

AEF

Or equivalent In context. B1 if no M1 but conclusion correct Allow average here

 $a+b=\frac{3}{4}$ 5 (i) $M'(0)=3^3/8$ M1 $\frac{1}{2} + 3a + 4b = \frac{3}{8}$ **A**1 Solve simultaneously M1

 $a = \frac{1}{8}$ AG **A**1 $b = \frac{5}{8}$

 $M''(t) = e^{2t} + \frac{9}{8}e^{3t} + 10e^{4t}$ B1

6

 $M''(0) - (M'(0))^2$ M1 $97/8 - (3\frac{3}{8})^2$ A1A1

x=2, 3, 4(iii)

- B1 1 (11)
- 6 (i) P(Y>y) = 1 - F(y)M1 $=a^3/y^3$ A1 $P(S > s) = P(all 3 values > s) = (a/s)^9 AG$ A1 $\mathbf{f}(s) = d/ds(1 - (a/s)^9)$ M1 **A**1 0 s < a

(ii)
$$\int_{a}^{\infty} \frac{a^{9}}{s^{9}} ds$$
 M1
= $9a/8$ A1
S not unbiased since this not equal to a M1

M1 $T_1 = 8S/9$ B1√

 $Var(T_1) = a^2/63$, $Var T_2 = a^2/9$ (iii) M1 Correct method A1 for both

 $Var(T_1) \le Var(T_2)$, T_1 is more efficient A1√ Comparison, completion.. $\sqrt{}$ one variance 3 correct with same dimensions

 $t_1 = 4.0, t_2 = 5.4$ (iv) From data $a \le 4.5$ and $t_2 > 4.5$

Both B1B1 **3 (15)** AEF

7 (i) G(1) = 1a = 2

M1 2 **A**1

- (ii) $(1+2t)/(4-t) = c (1+2t)(1-\frac{1}{4}t)^{-1}$
- M1 $c = \frac{1}{4}$ or 4 **A**1
- +2t)/(4-t) = c (1+2t)(1-74t)=\frac{1}{4}(1+2t)(1+\frac{1}{4}t+(\frac{1}{4}t)^2+\dots)
 Coefficient of $t^3 = \frac{1}{4}[(\frac{1}{4})^3+2(\frac{1}{4})^2]$ =\frac{9}{256}
- M1√ With 2 terms from previous line **A**1

(iii) $H(t) = \left(\frac{1+2t}{4-t}\right)^3$

- B1
- H'(t) = $3\left(\frac{1+2t}{4-t}\right)^2 \left[\frac{2(4-t)+1+2t}{(4-t)^2}\right]$
- M1A1

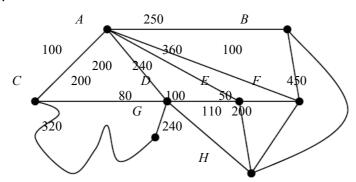
 $\mathrm{E}(Y)=\mathrm{H}'(1)$ =3

- M15 A1
- (iv) $H(1)=p_0+p_1+p_2+p_3+p_4+...=1$ H(-1) = $p_0 - p_1 + p_2 - p_3 + p_4 - \dots = -\frac{1}{125}$ Add: $2(p_0 + p_2 + p_4 + \dots) = 1 - \frac{1}{125}$ $\frac{1}{2}(1 - \frac{1}{125})$ AG
- M1 With sufficient detail **A**1 2 (13)

4736 Decision Mathematics 1

1	(i)	Biggest/largest/last number (only)	B1	Accept bubbling to left unless	
				inconsistent with part (ii):	[[
		(Not showing effect on a specific list)		Smallest/first number	[1]
	(ii)	2 1 3 4 5 horizontally or vertically	M1	Or bubbling to left: 1 3 2 4 5	
		(may see individual comparisons/swaps)		Watch out for shuttle sort used	
		[For reference: original list was 3 2 1 5 4]			
		4 comparisons and 3 swaps (both correct)	A1	If not stated, assume that	
				comparisons come first	[2]
	(iii)	1 2 3 4 5	M1	FT from their first pass with their	
				bubbling if possible	
		One (more pass after this)	A1	Watch out for	
		•		'One swap (in 2 nd pass)'	[2]
	(iv)	$(3000 \div 500)^2 \times 0.2$	M1	$6^2 \times 0.2 \text{ or } 8 \times 10^7 \times 9 \times 10^6$	
				or any equivalent calculation	
		= 7.2 seconds	A1	cao UNITS	[2]
			•	Total =	7

(ii) eg M1 Any graph with four vertices of orders 2, 2, 4, 4 (that is topologically different from that in part (i)) A graph that is not connected Recognition in words that their graph is not connected B1 is not connected [3]	2	(i)	eg - Graph is not simple - Two of the vertices are joined by two arcs (if appropriate) - It has a 'loop' (if appropriate) - For a simple graph each vertex must have order 3 or less	M1 A1 B1	A graph with four vertices of orders 2, 2, 4, 4 (ignore any vertex labels) A connected graph Recognition that their graph is not simple (although it is connected). Need not use the word 'simple'.	[3]
		(ii)	eg	A1	orders 2, 2, 4, 4 (that is topologically different from that in part (i)) A graph that is not connected Recognition in words that their graph	[3]


3	(i)	$y \le x + 2 x + 2y \ge 6 2x + y \le 12 $ $(y \ge -\frac{1}{2}x + 3) (y \le -2x + 12)$	M1 M1 M1 A1	Line $y = x + 2$ in any form Line $x + 2y = 6$ in any form Line $2x + y = 12$ in any form All inequalities correct	[4]
	(ii)	$x + 2y = 6$ and $y = x + 2 \Rightarrow (\frac{2}{3}, 2\frac{2}{3})$ $y + 2x = 12$ and $y = x + 2 \Rightarrow (3\frac{1}{3}, 5\frac{1}{3})$ $y + 2x = 12$ and $x + 2y = 6 \Rightarrow (6, 0)$	M1 A1 A1 B1	Follow through if possible Calculating from their lines or implied from either A mark	[4]
	(iii)	$(\frac{2}{3}, 2\frac{2}{3}) \Rightarrow 11\frac{1}{3}$ $(3\frac{1}{3}, 5\frac{1}{3}) \Rightarrow 32\frac{2}{3}$ $(6, 0) \Rightarrow 30$ At optimum, $x = 3\frac{1}{3}$ and $y = 5\frac{1}{3}$ Maximum value = $32\frac{2}{3}$	M1 A1 A1	Follow through if possible Testing vertices or using a line of constant profit (may be implied) Accept $(3\frac{1}{3}, 5\frac{1}{3})$ identified (ft) $32\frac{2}{3}$ (air 32.6 to 32.7) (ft)	[3]
	(iv)	$5 \times 3 \frac{1}{3} + k \times 5 \frac{1}{3} \ge 5 \times 6 + k \times 0$ $\Rightarrow k \ge 2.5$	M1 M1 A1	$5\times3\frac{1}{3} + k\times5\frac{1}{3}$ (ft) or implied $5\times6 + k\times0$ or 30 or implied Greater than or equal to 2.5 (cao)	[3]

4	(i)	1 0 4 5	M1	Both 6 and 5 shown at B	
		$ \begin{array}{c cccc} & 6 & 5 \\ \hline & B & \\ \end{array} $	M1	All temporary labels correct including F and J	
		5 6 (9) (16) 7 12	A1	No extra temporary labels	
		$ \begin{array}{c cccc} 6 & & 16 & & 12 \\ \hline C & & F & H \end{array} $	В1	All permanent labels correct (may omit <i>F</i> and/or <i>J</i>) cao	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	В1	Order of labelling correct (may omit F and/or J , may reverse F and J) cao	
		(10) (16) 8 14 16 14 K	B1 B1	A - E - B - G - H - K cao 14 cao	[7]
		Route = $A - E - B - G - H - K$ Length = 14 metres			
	(ii)	Without using <i>CJ</i> :		Follow through their (i)	
		Route = $A - E - B - G - F - J$	B1	A-E-B-G-F-J	
		Length = 21 metres	B1	21	[2]
	(iii)	More than 2 metres	M1 A1	2 (cao) More than, or equivalent	
		(Answer of 'more than 7 metres' or '7 metres' \Rightarrow M1, A0)		(Answer of 3 or \geq 3 \Rightarrow SC1)	[2]

5 (i)			E	E	И	7			
		\overline{A})	r	3 -	x	B1	AW = 3 - x	
		В	J	v	3 -	y	B1 B1	BW = 3 - y $CE = 4 - x - y, in any form$	
		\overline{C}	1	x - y		- y - 1	D1	CD + x y, in any form	
							M1	An appropriate calculation for their	
	Total o	cost = f	E(250x)	+250(3- <i>x</i>)			table	
		-	+ 200 <i>y</i>	+ 140(3- <i>y</i>)		A1	Leading to given result	[5]
		+ 3000	(4-x-y)	+280((x+y-1))	A1	Leading to given result	ا ا
	= £(20)	90 - 20	x + 40	<i>y</i>)	(A	G)			
(ii)	2090 -	20x + 4	$40y \leq 2$	2150			D.1		
	\Rightarrow -20	x + 40y	<u> ≤ 60</u>				B1	Showing where the given inequality comes from	
	$\Rightarrow -x$	$+2y \leq 3$			(A	G)		comes from	[1]
(iii)	50(3-x	50(3-x) + 40(3-y) + 60(x+y-1)					M1	Follow through their table	т
	`	+ 10x +			-,		A1	Correct expression	
	1		-	ex + 2y	(A	(G)		210 + 10x + 20y	[2]
(iv)	P	x	y	S	t	<i>-</i>		Rows and columns may be in any	
	1	-1	-2	0	0	0	, n	order	
	0	-1	2	1	0	3	B1 B1	-1 -2 in objective row Constraint rows correct	[2]
	0	1	1	0	1	3	D1	Constraint rows correct	ا ا
(v)	Pivot	on the 2	in the	y colur	nn	'	B1	B1 Correct choice of pivot from <i>y</i>	
	1	-2	0	1	0	3		column	
	0	-0.5	1	0.5	0	1.5	1	Follow through their tableau and valid pivot if possible	
	0	1.5	0	-0.5	1	1.5	M1	Pivot row correct	
	Divot	on 15 i	n tha w	colum			A1	Other rows correct	
	Fivol)11 1.3 1. 	11 tile <i>X</i>				M1	Correct chains of nivet	
	1	0	0	$\frac{1}{3}$	$1\frac{1}{3}$	5	M1	Correct choice of pivot Follow through their tableau	
		0	1	$\frac{1}{3}$	$\frac{1}{3}$	2		and valid pivot if possible	
	0	1	0	- 1/3	$\frac{2}{3}$	1	A1	Correct tableau	
		1			1 3	1	B1	Correct answer only	[6]
	x=1	v=2							
	, n 1,	<i>y</i> 2					1	Total =	16

6	(a)(i)	Route Inspection (problem)	B1	Or Chinese postman (problem)	[1]
	(ii)	Odd nodes are A, B, C and D	B1	Identifying odd nodes (may be	
			M1	implied from working) Pairing odd nodes (all three pairings	
		$AB = 250 \qquad AC = 100 \qquad AD = 200$	IVII	considered)	
		$CD = \underline{200} \qquad BD = \underline{250} \qquad BC = \underline{350}$		M mark may not be implied	
		450 350 550	A1	350 as minimum	F 43
		Repeat AC and $BFED = 350$	B1	3350 m or 3.35 km UNITS	[4]
	(***)	Length of shortest route = 3350 metres			
	(iii)	C is an odd node, so we can end at		Working need not be seen	
		another odd node.	M1	May be implied from answer	
		AB = 250 $AD = 200$ $BD = 250$			
		Repeat $AD = 200$ Length of route = 3200 metres	A1	3200	[2]
		Route ends at <i>B</i>	B1	В	[3]
	(b)(i)	D-G-C-A-E-F-B-H-D	M1	Correct cycle	
	(0)(1)	D - G - C - A - E - F - B - H - D	1411	If drawn then arcs must be directed	
				1580	
		1580 metres	A1 B1	Identifying the stall	[3]
		A - C - D - G then method stalls	D1		
	(ii)		M1	Use of Prim's algorithm to build tree	
		BF = 100		(e.g. an attempt at list of arcs or order	
		FE = 50 C		of adding vertices). NOT Kruskal Correct arcs chosen (listed or seen on	
		ED = 100 $D E F$	A1	tree)	
		DG = 80		A correct tree with vertices labelled	
		EH = 110 H	B1	Order stated or clearly implied	
		DC = 200	A1	640	
			B1		[5]
		Order of adding nodes: BFEDGHC			
\vdash	(iii)	Total weight of tree = 640 metres Lower bound = $640 + 100 + 200 = 940$	M1	300 + weight of their tree	
	(111)		1	their 940 < length < their 1580	
		940 metres ≤ shortest tour ≤ 1580 metres		(condone use of < here)	[2]
				Total =	18

For reference:

4737 Decision Mathematics 2

1(a)	(i)				
		$A \longrightarrow P$			
			B1	A correct bipartite graph	
		$B \longrightarrow Q$			
		$E \longrightarrow R$			
		$F \longrightarrow T$			
					[[1]
	(ii)				[1]
		A P			
			B1	A second bipartite graph showing	
		$B \longrightarrow Q$		the incomplete matching correctly	
		E			
		$F \leftarrow T$			
		G	5.4		[1]
	(iii)	F-R-B-P	B1	This path in any reasonable form	
		A = T $B = P$ $E = U$ $F = R$ $G = Q$	В1	This complete matching	[2]
	(iv)	A = P $B = T$ $E = U$ $F = R$ $G = Q$	B1	This complete matching	[1]
(b)	(i)	Hungarian algorithm finds the minimum cost matching, subtract from 10 to convert a	B1	An appropriate reference to	
		maximising problem into a minimising problem.		maximising/minimising	
		Column <i>X</i> is a dummy column (dummy task) to	B1	'Dummy' or 'square table' or	
		make the table square	D1	equivalent	[2]
	(ii)	C D L S X H 1 2 4 4 10		For reference only	
		H 1 2 4 4 10 I 2 4 7 6 10		For reference only	
		J 4 6 5 9 10			
		K 3 8 7 7 10			
		N 3 7 7 5 10			

I	Reduce col	umns						
	0	0	0	0	0	M1	Either reducing columns or reducing rows of 5×5 matrix	
	3	2	3	5	0		reducing rows or 5/15 matrix	
	2	6	3	3	0	A1	This reduced matrix	
	2	5	3	1	0	AI	Correct answer only	
	Rows are a	lready re	educed				, , , , , , , , , , , , , , , , , , , ,	
	Augment b	y 1						
	0	0	0	0	1	M1	A reasonable attempt to augment	
	0	1	2	1	0			
	2	3	0	4	0			
	1	5	2	2	0	A1	This final matrix	
	1	4	2	0	0		Correct answer only	
	H = D	Harry is	s the dire	ector				
	I = C			the came		B1	This matching, indicated in any	
	J = L $N = S$			e of light ge of sou			way	
	N-S		erry is no		iiiu		·	
	Total score	. =						
	(10-2) + (1		0-5) + (10-5) + (10-10)	M1		
	= 26	, (, ,	, (,	A1	A reasonable attempt, 14 or $24 \Rightarrow M1$, A0	
							$ \begin{array}{c} 14 \text{ of } 24 \rightarrow \text{M1, A0} \\ 26 \end{array} $	
(iii)		<i>C</i>	D	L	S			
` ′	7		4	7	6 9			
	I	2	6	5				
	I J K	4 3	6 8	5 7	7	B1	This 4×4 matrix (need not have row	
	J	4	6 8 7			B1	This 4×4 matrix (need not have row and column labels)	
	J K	3 3	8	7	7	B1	and column labels) Or reduce rows	
	J K N	4 3 3 3 umns 0	8 7 0	7 7	7 5	B1	or reduce rows 0 2 5 4	
	J K N	4 3 3 lumns 0 2	8 7 0 2	7 7 2 0	7 5		Or reduce rows 0 2 5 4 0 2 1 5	
	J K N	4 3 3 3 lumns 0 2 1	8 7 0 2 4	7 7 2 0 2	7 5	B1	and column labels) Or reduce rows 0 2 5 4 0 2 1 5 0 5 4 4	
	J K N	4 3 3 lumns 0 2	8 7 0 2	7 7 2 0	7 5		and column labels) Or reduce rows 0 2 5 4 0 2 1 5 0 5 4 4 0 4 4 2	
	J K N	4 3 3 3 umns 0 2 1 1	8 7 0 2 4 3	7 7 2 0 2 2	7 5		and column labels) Or reduce rows 0 2 5 4 0 2 1 5 0 5 4 4 0 4 4 2 Then reduce columns	
	J K N	4 3 3 3 lumns 0 2 1 1	8 7 0 2 4 3	7 7 7 2 0 2 2 2 2	7 5 1 4 2 0	M1	and column labels) Or reduce rows 0 2 5 4 0 2 1 5 0 5 4 4 0 4 4 2 Then reduce columns 0 0 4 2	
	J K N	4 3 3 3 slumns 0 2 1 1 1 2 ce rows 0 2	8 7 0 2 4 3	7 7 2 0 2 2 2	7 5 1 4 2 0		and column labels) Or reduce rows 0 2 5 4 0 2 1 5 0 5 4 4 0 4 4 2 Then reduce columns 0 0 4 2 0 0 0 3	
	J K N	4 3 3 3 4 4 4 4 5 4 5 4 5 4 6 6 6 6 6 6 6 6 6 6	8 7 0 2 4 3	7 7 0 2 2 2 2	7 5 1 4 2 0	M1	and column labels) Or reduce rows 0 2 5 4 0 2 1 5 0 5 4 4 0 4 4 2 Then reduce columns 0 0 4 2 0 0 0 3 0 3 3 2	
	J K N	4 3 3 3 slumns 0 2 1 1 1 2 ce rows 0 2	8 7 0 2 4 3	7 7 2 0 2 2 2	7 5 1 4 2 0	M1	and column labels) Or reduce rows 0 2 5 4 0 2 1 5 0 5 4 4 0 4 4 2 Then reduce columns 0 0 4 2 0 0 0 3	
	J K N	4 3 3 3 slumns 0 2 1 1 1 see rows 0 2 0 1 1	0 2 4 3 0 2 3	7 7 2 0 2 2 2	7 5 1 4 2 0	M1	and column labels) Or reduce rows 0 2 5 4 0 2 1 5 0 5 4 4 0 4 4 2 Then reduce columns 0 0 4 2 0 0 0 3 0 3 3 2	

2	(i)	-2	B1	Accept 'loses 2' or equivalent	[1]
	(ii)	Column <i>W</i> is dominated by column <i>Y</i> . If Rowena plays <i>P</i> , Collette loses 2 with <i>W</i> but	B1	Stating <i>Y</i> (but not <i>W</i> dominates <i>Y</i>)	
		1 with Y.	В1	Correct comparisons explained,	
		If Rowena plays Q, Collette loses 1 with W but gains 1 with Y.		2 > 1 and $1 > -1$, or equivalent	[2]
	(iii)	Rowena	M1	Determining row minima and column maxima, or equivalent. Must be correct, including W if	
		Col max [2] 2 1 3 Play-safe for Rowena is P	A1	shown. May not be implied from answers.	
		Play-safe for Collette is Y	A1	P stated Y stated	[3]
	(iv)	-3p + 2(1-p) = 2-5p Y gives $2p-1$	B1	2-5 <i>p</i> in simplified form	
		Z gives 7p-4	В1	Both 2 <i>p</i> -1 and 7 <i>p</i> -4 in any form	[2]
	(v)	4 E 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	В1	Graph must be on graph paper Their lines drawn correctly on a reasonable scale	
		$7p - 4 = 2 - 5p \Rightarrow p = 0.5$	M1	Solving the correct pair of equations (only) or using graph	
		E = -0.5	A1 B1	correctly 0.5, correct answer only -0.5, correct answer only	[4]
	(vi)	Add 4 throughout matrix to make all values non-negative On this augmented matrix, if Collette plays <i>Y</i>	B1	'Add 4', or new matrix written out or equivalent	
		Rowena expects $4p_1 + 3p_2 + 6p_3$, and if Collette plays Z Rowena expects $7p_1 + 0p_2 + 2p_3$	В1	Relating to columns Y and Z respectively. Note: $4p_1 + 3p_2 + 6p_3$ and $7p_1 + 2p_3$ are given in question	
		We are solving a <u>maximin</u> problem. m is less than or equal to each of these values since we need find the maximum value of the worst possible augmented expected pay-off for	B1	Or shown on a diagram. For each value of p we look at the minimum output.	
	(vii)	each value of <i>p</i> We use an inequality instead of an equality	B1	So that we can use the Simplex	[3]
		because this is needed to enable the Simplex algorithm to pivot on a row that will increase the value of M	DI	algorithm.	[1]
	(viii)	$p_3 = \frac{3}{7}$	B1	$\frac{3}{7}$	
		$E = \frac{6}{7}$	B1	$\frac{6}{7}$	[2]
				Tota	l = 18

ANSWERED ON INSERT

3 (i) SA, B, D, G ; $\{C, E, F, T\}$ (given) $AC = 4, BC = 2, BE = 1, DE = 2, GE = 5, GT = 6$ $A+2+1+2+5+6$ $A=20$ litres per minute can enter G so the arc G G can carry at most 2 litres per minute G can carry at most 2 litres per minute G can carry at most 2 litres per minute G can carry at most 2 litres per minute G can carry at most 2 litres per minute G can carry at most 2 litres per minute G can carry at most 2 litres per minute G can carry at most 2 litres per minute G can carry at most 2 litres per minute G carry at mos			ANSWERED ON INSERT			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	(i)		M1		
			AC = 4, $BC = 2$, $BE = 1$, $DE = 2$, $GE = 5$, $GT = 6$			
20 litres per minute A1 20 from a correct calculation [2]			4+2+1+2+5+6		2, 3, 6	
(ii) At most 2 litres per minute can enter G so the arc G can carry at most 2 litres per minute G litres per minute through G litres per minute G litres per minute through G litres per mi				A1	20 from a correct calculation	[2]
GE can carry at most 2 litres per minute B1 S		(ii)	*			
(iii) At most 8 litres per minute can flow into E Flow shown on diagram on insert Flow in = flow out for each vertex except S , T A feasible flow of 8 litres per minute through E A feasible flow of 8 litres per minute through E A feasible flow of 8 litres per minute through E A feasible flow of 8 litres per minute through E A feasible flow of 8 litres per minute through E A feasible flow of 8 litres per minute through E A feasible flow of 8 litres per minute through E A feasible flow of 8 litres per minute through E A feasible flow of 8 litres per minute through E A feasible flow of 8 litres per minute through E A feasible flow of 8 litres per minute through E A flow of the rate they have claimed through E (directpost whether it is feasible) (directions may not be changed, assume a blank means 0) No pipe capacities exceeded and flow through $E = S$ Assume blanks mean 0 A facsible flow of 8 litres per minute through E A flow of the rate they have claimed through E (if is feasible) (directions may not be changed, assume a blank means 0) No pipe capacities exceeded and flow through $E = S$ Assume blanks mean 0 A facsible flow of 8 litres per minute through E A flow of the rate they have claimed through E is feasible. A flow of the rate they have claimed through E for hybert E is feasible. Assume blanks mean 0 A flow through $E = S$ my not be changed, assume a blank means 0) No pipe capacities exceeded and flow through $E = S$ Assume blanks mean 0 A flow for whether it is feasible, directory $E = S$ Assume blanks mean 0 A flow for whether it is feasible, directory $E = S$ All Arrows on arcs on one of the route $SACFT$. Babella quarter $SAFT$, $SAFT$		(-2)	1			[1]
Flow in = flow out for each vertex except S , T is feasible T in Flow in = flow of 8 litres per minute through T is feasible (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T assume blanks mean 0. Arrows on arcs on one of the routes $SACFT$, $SBET$, SB		(iii)		B1	8	
Flow in = flow out for each vertex except S , T is feasible T in Flow in = flow of 8 litres per minute through T is feasible (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T is feasible) (directions may not be changed, assume a blank means 0). No pipe capacities exceeded and flow through T assume blanks mean 0. Arrows on arcs on one of the routes $SACFT$, $SBET$, SB						
Seasible flow of 8 litres per minute through E Seasible) (directions may not be changed, assume a blank means 0) No pipe capacities exceeded and flow through $E=8$ Seasible flow of the season of the changed assume a blank means 0) No pipe capacities exceeded and flow through $E=8$ Season of the season of the changed assume a blank means 0 No pipe capacities exceeded and flow through $E=8$ Season of the season of t				M1		
A feasible flow of 8 litres per minute through E (iv) Arrows labelled on diagram $SA = 0$ $AC = 0$ $CF = 0$ $FT = 1$ $AS = 4$ $CA = 4$ $FC = 4$ $TF = 4$ $AS = 4$ $CA = 4$ $FC = 4$ $TF = 4$ $AT = 4$			Flow in = flow out for each vertex except S , I			
A feasible flow of 8 litres per minute through E [3] (iv) Arrows labelled on diagram $SA = 0$ $AC = 0$ $CF = 0$ $FT = 1$ $AS = 4$ $CA = 4$ $FC = 4$ $TF = 4$ AI A A sumable blanks mean 0 $SA = 0$ $AC = 0$ $CE = 0$ $EC = 0$						
(iv) Arrows labelled on diagram $SA = 0$ $AC = 0$ $CF = 0$ $FT = 1$ $AS = 4$ $CA = 4$ $FC = 4$ $FC = 4$ $TF = 4$ $AS = 4$ $AC = 0$ $CB = 0$ $EC = $			A feasible flow of 8 litres per minute through E	A1		
$SA = 0 AC = 0 CF = 0 FT = 1 \\ AS = 4 CA = 4 FC = 4 TF = 4 \\ AS = 4 CA = 4 FC = 4 TF = 4 \\ BA = 0 CB = 0 EC = 0 FE = 0 \\ BB = 3 BC = 2 CE = 3 EF = 4 \\ BA = 0 CB = 0 EC = 0 FE = 0 \\ BS = 1 EB = 1 TE = 1 \\ BD = 3 DE = 2 EG = 0 \\ DB = 0 ED = 0 GE = 5 \\ SD = 0 DG = 0 GE = 5 \\ SD = 0 DG = 0 GT = 4 \\ DS = 2 GD = 2 TG = 2 \\ SB = 42 BD = 31 DE = 20 ET = 53 \\ BS = 13 DB = 02 ED = 02 TE = 13 \\ SB = 42 0 BC = 20 CE = 31 ET = 53 \\ SB$			Troubles now or o muse per minute unlonger is			[3]
$AS = 4 \qquad CA = 4 \qquad FC = 4 \qquad TF = 4 \\ AB = 3 \qquad BC = 2 \qquad CE = 3 \qquad EF = 4 \\ BA = 0 \qquad CB = 0 \qquad EC = 0 \qquad FE = 0 \\ SB = 4 \qquad BE = 0 \qquad ET = 5 \\ BS = 1 \qquad EB = 1 \qquad TE = 1 \qquad \qquad M1 \qquad Arrows on arcs on one of the routes SACFT, SBET, SDGT labelled correctly, or all labels on the route reversed BD = 3 \qquad DE = 2 \qquad EG = 0 \\ DB = 0 \qquad ED = 0 \qquad GE = 5 \qquad \qquad A1 \qquad All arrows labelled correctly, not reversed \\ SD = 0 \qquad DG = 0 \qquad GT = 4 \\ DS = 2 \qquad GD = 2 \qquad TG = 2 \\ SD = 0 \qquad DG = 0 \qquad GT = 4 \\ DS = 2 \qquad GD = 2 \qquad TG = 2 \\ SB = 1 \qquad DB = 0 \qquad 2 \qquad ED = 0 \qquad 2 \qquad TE = 13 \\ SB = 4 \qquad 2 \qquad BD = 3 \qquad 1 \qquad DE = 2 \qquad 0 \qquad ET = 5 \qquad 3 \\ BS = 1 \qquad 3 \qquad DB = 0 \qquad 2 \qquad ED = 0 \qquad 2 \qquad TE = 13 \\ SB = 4 \qquad 2 \qquad BD = 3 \qquad 1 \qquad DE = 2 \qquad 0 \qquad ET = 5 \qquad 3 \\ 1 \qquad BS = 1 \qquad 3 \qquad DB = 0 \qquad 2 \qquad ED = 0 \qquad 2 \qquad TE = 13 \\ SB = 4 \qquad 2 \qquad 0 \qquad BC = 2 \qquad 0 \qquad CE = 3 \qquad 1 \qquad ET = 5 \qquad 3 \\ 1 \qquad BS = 1 \qquad 3 \qquad 5 \qquad CB = 0 \qquad 2 \qquad EC = 0 \qquad 2 \qquad TE = 13 \\ SB = 4 \qquad 2 \qquad 0 \qquad BC = 2 \qquad 0 \qquad CE = 3 \qquad 1 \qquad ET = 5 \qquad 3 \\ 1 \qquad BS = 1 \qquad 3 \qquad 5 \qquad CB = 0 \qquad 2 \qquad EC = 0 \qquad 2 \qquad TE = 13 \\ SD = 0 \qquad DC = 0 \qquad$		(iv)			Assume blanks mean 0	
$AB = 3 BC = 2 CE = 3 EF = 4 \\ BA = 0 CB = 0 EC = 0 FE = 0$ $SB = 4 BE = 0 ET = 5 \\ BS = 1 EB = 1 TE = 1$ $BD = 3 DE = 2 EG = 0 \\ DB = 0 ED = 0 GE = 5$ $SD = 0 DG = 0 GT = 4 \\ DS = 2 GD = 2 TG = 2$ $(v) Amount that flows along SBDET = 2 litres per min SB = 42 BD = 3 DE = 20 ET = 53 \\ BS = 13 DB = 02 ED = 02 TE = 13 SB = 42 BD = 31 DE = 20 ET = 53 \\ BS = 13 DB = 02 ED = 02 TE = 13 SB = 42 0 BC = 20 CE = 31 ET = 53 \\ 1 BS = 13 5 CB = 02 EC = 02 TE = 13 SB = 42 0 BC = 20 CE = 31 ET = 53 \\ 1 BS = 13 5 CB = 02 EC = 02 TE = 13 SB = 42 0 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 \\ 1 BC = 20 BC = 20 CE = 31 ET = 53 BC = 20 ET = 13 BT = 20 E$			SA = 0 $AC = 0$ $CF = 0$ $FT = 1$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			AS = 4 $CA = 4$ $FC = 4$ $TF = 4$	M1		
$SB = 4 BE = 0 ET = 5 \\ BS = 1 EB = 1 TE = 1$ $BD = 3 DE = 2 EG = 0 \\ DB = 0 ED = 0 GE = 5$ $SD = 0 DG = 0 GT = 4 \\ DS = 2 GD = 2 TG = 2$ $(v) Amount that flows along SBDET = 2 litres per min \\ SB = 4 2 BD = 3 1 DE = 2 0 ET = 5 3 \\ BS = 1 3 DB = 0 2 ED = 0 2 TE = 13$ $(vi) Route used = SBCET \\ SB = 4 2 0 BC = 2 0 CE = 3 1 ET = 5 3 \\ 1 BS = 1 3 5 CB = 0 2 EC = 0 2 TE = 1 3 \\ 5 (vii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG (viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG (Viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG (Viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG (Viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG (Viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG (Viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG (Viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG (Viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG (Viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG (Viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG (Viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG (Viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG$			AR = 3 $RC = 2$ $CF = 3$ $FE = A$		* *	
$SB = 4 BE = 0 ET = 5 \\ BS = 1 EB = 1 TE = 1$ $BD = 3 DE = 2 EG = 0 \\ DB = 0 ED = 0 GE = 5$ $SD = 0 DG = 0 GT = 4 \\ DS = 2 GD = 2 TG = 2$ $(v) \text{Amount that flows along } SBDET = 2 \text{ litres per min} \\ SB = 4 2 BD = 3 1 DE = 2 0 ET = 5 3 \\ BS = 1 3 DB = 0 2 ED = 0 2 TE = 1 3$ $(vi) \text{Route used } = SBCET$ $SB = 4 2 0 BC = 2 0 CE = 3 1 ET = 5 3 \\ 1 BS = 1 3 5 CB = 0 2 EC = 0 2 TE = 1 3$ $(vii) \text{Follow through their (v) and (vi) if possible} \\ SD = 0 2 DD = $						
$BS = 1 \qquad EB = 1 \qquad TE = 1$ $BD = 3 \qquad DE = 2 \qquad EG = 0$ $DB = 0 \qquad ED = 0 \qquad GE = 5$ $SD = 0 \qquad DG = 0 \qquad GT = 4$ $DS = 2 \qquad GD = 2 \qquad TG = 2$ $(v) \qquad \text{Amount that flows along } SBDET = 2 \text{ litres per min}$ $SB = 4 2 \qquad BD = 3 \qquad 1 \qquad DE = 2 \qquad ET = 5 \qquad 3$ $BS = 1 \qquad 3 \qquad DB = 0 \qquad ED = 0 \qquad 2 \qquad TE = 1 \qquad 3$ $SB = 4 2 \qquad BD = 3 \qquad 1 \qquad DE = 2 \qquad 0 \qquad ET = 5 \qquad 3$ $BS = 1 \qquad 3 \qquad DB = 0 \qquad ED = 0 \qquad 2 \qquad TE = 1 \qquad 3$ $SB = 4 2 \qquad 0 \qquad BC = 2 \qquad 0 \qquad CE = 3 \qquad 1 \qquad ET = 5 \qquad 3$ $1 \qquad SB = 4 2 \qquad 0 \qquad BC = 2 \qquad 0 \qquad CE = 3 \qquad 1 \qquad ET = 5 \qquad 3$ $1 \qquad BS = 1 \qquad 3 \qquad 5 \qquad CB = 0 \qquad 2 \qquad EC = 0 \qquad 2 \qquad TE = 1 \qquad 3$ $5 \qquad \text{M1} \qquad \text{A1} \qquad \text{A1} \qquad \text{A1} \qquad \text{b1} \qquad \text{b1} \qquad \text{b2} \qquad \text{b3} \qquad \text{b3} \qquad \text{b3} \qquad \text{b4} \qquad b4$						
$ BD = 3 \qquad DE = 2 \qquad EG = 0 \\ DB = 0 \qquad ED = 0 \qquad GE = 5 $ Al All arrows labelled correctly, not reversed $ SD = 0 \qquad DG = 0 \qquad GT = 4 \\ DS = 2 \qquad GD = 2 \qquad TG = 2 $ (v) Amount that flows along $SBDET = 2$ litres per min $ SB = 4 \ 2 \qquad BD = 3 \ 1 \qquad DE = 2 \ 0 \qquad ET = 5 \ 3 \\ BS = 1 \ 3 \qquad DB = 0 \ 2 \qquad ED = 0 \ 2 \qquad TE = 1 \ 3 $ Al Labels updated consistently These all labelled correctly (and not reversed) $ SBCET \qquad SB = 4 \ 2 \qquad 0 \qquad BC = 2 \ 0 \qquad CE = 3 \ 1 \qquad ET = 5 \ 3 \\ 1 \qquad BS = 1 \ 3 \ 5 \qquad CB = 0 \ 2 \qquad EC = 0 \ 2 \qquad TE = 1 \ 3 $ All arrows labelled correctly, not reversed $ SBDET : \qquad A1 \qquad A2 \qquad A2 \qquad B2 \qquad B3 \qquad B3 \qquad B3 \qquad B3 \qquad B3 \qquad B3 \qquad B$				M1		
$SD = 0 DG = 0 GT = 4 \\ DS = 2 GD = 2 TG = 2$ $(v) \text{Amount that flows along } SBDET = 2 \text{ litres per min} \\ SB = 42 BD = 3 DE = 2 ET = 5 3 \\ BS = 13 DB = 0 2 ED = 0 2 TE = 1 3 \\ SB = 42 0 BC = 2 0 CE = 3 1 ET = 5 3 \\ 1 BS = 1 3 5 CB = 0 2 EC = 0 2 TE = 1 3 \\ 5 \text{(vii)} \text{Eg cut through arcs } SA, SB, SD \\ \text{(viii)} \text{Eg cut through arcs } SA, SB, SD \\ \text{Or arcs } AC, BC, BE, DE, DG \\ \text{(vi)} \text{Amount that flows along } SBDET = 2 \text{ litres per min} \\ M1 As uitable cut chosen, indicated in any way Indicated by listing arcs cut } [3]$			BS = 1 $EB = 1$ $TE = 1$		correctly or all reversed	
$SD = 0 DG = 0 GT = 4 \\ DS = 2 GD = 2 TG = 2$ $(v) \text{Amount that flows along } SBDET = 2 \text{ litres per min} \\ SB = 42 BD = 3 DE = 2 ET = 5 3 \\ BS = 13 DB = 0 2 ED = 0 2 TE = 1 3 \\ SB = 42 0 BC = 2 0 CE = 3 1 ET = 5 3 \\ 1 BS = 1 3 5 CB = 0 2 EC = 0 2 TE = 1 3 \\ 5 \text{(vii)} \text{Eg cut through arcs } SA, SB, SD \\ \text{(viii)} \text{Eg cut through arcs } SA, SB, SD \\ \text{Or arcs } AC, BC, BE, DE, DG \\ \text{(vi)} \text{Amount that flows along } SBDET = 2 \text{ litres per min} \\ M1 As uitable cut chosen, indicated in any way Indicated by listing arcs cut } [3]$			DD = 2 $DE = 2$ $EC = 0$	A 1	All amounts labelled compathy not	
$SD = 0 DG = 0 GT = 4 \\ DS = 2 GD = 2 TG = 2$ $(v) \text{Amount that flows along } SBDET = 2 \text{ litres per min} \\ SB = 42 BD = 3 DE = 2 ET = 5 3 \\ BS = 13 DB = 0 2 ED = 0 2 TE = 1 3 \\ SB = 42 0 BC = 2 0 CE = 3 1 ET = 5 3 \\ 1 BS = 1 3 5 CB = 0 2 EC = 0 2 TE = 1 3 \\ 5 \text{(vii)} \text{Eg cut through arcs } SA, SB, SD \\ \text{(viii)} \text{Eg cut through arcs } SA, SB, SD \\ \text{Or arcs } AC, BC, BE, DE, DG \\ \text{(vi)} \text{Amount that flows along } SBDET = 2 \text{ litres per min} \\ M1 As uitable cut chosen, indicated in any way Indicated by listing arcs cut } [3]$			DB = 0 ED = 0 GE = 5	AI		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Teversed	[3]
(v) Amount that flows along $SBDET = 2$ litres per min $SB = 42 BD = 31 DE = 20 ET = 53 A1 DE = 20 ET = 53 A1 DE = 20 ET = 53 A1 DE = 20 ET = 13$ (vi) Route used $= SBCET$ $SB = 42 0 BC = 20 CE = 31 ET = 53 M1 A1 ET = 53 ET = 13 ET =$						(,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$SB = 4 \ 2 BD = 3 \ 1 DE = 2 \ 0 ET = 5 \ 3 A1 DE = 2 \ 0 ET = 5 \ 3 A1 EDE = 2 \ 0 ET = 5 \ 3 A1 EDE = 2 \ 0 ET = 5 \ 3 A1 EDE = 2 \ 0 ET = 1 \ 3 EDE = 2 \ 0 ED = 0 \ 2 ED = $		(v)		B1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			min	M1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			SR = 4.2 $RD = 3.1$ $DF = 2.0$ $FT = 5.3$	1		[3]
(vi) Route used = $SBCET$ $SB = 4 \ 2 \ 0 BC = 2 \ 0 CE = 3 \ 1 ET = 5 \ 3 M1$ $BS = 1 \ 3 \ 5 CB = 0 \ 2 EC = 0 \ 2 TE = 1 \ 3$ $SB = 4 \ 2 0 BC = 2 \ 0 CE = 3 \ 1 ET = 5 \ 3 M1$ $BS = 1 \ 3 \ 5 CB = 0 \ 2 EC = 0 \ 2 TE = 1 \ 3$ $SB = 4 \ 2 0 BC = 2 \ 0 CE = 3 \ 1 ET = 5 \ 3 M1$ $A1 These all labelled correctly (and not reversed)$ $SB = \frac{4 \ 4 C 4 F}{2 2 2 0 4} B1$ $SB = \frac{4 4 C 4 F}{2 2 2 0 4} B1$ $SB = \frac{4 4 C 4 F}{2 2 2 0 4} B1$ $SB = \frac{4 2 0 EC = 3 1 ET = 5 3 M1}{2 2 2 2 2 2 2 2 2 2 $				Α1		[2]
$SB = 42 \ 0 BC = 2 \ 0 CE = 3 \ 1 ET = 5 \ 3 \\ 1 BS = 1 \ 3 \ 5 CB = 0 \ 2 EC = 0 \ 2 TE = 1 \ 3 \\ 5 D 2 G B1 $ For arrows on route $SBCET$: Labels updated consistently These all labelled correctly (and not reversed) [3] (and not reversed) [1] $S = \frac{A A C A F}{2 D 2 G} B1 Follow through their (v) and (vi) if possible Assume blanks mean 0$ [1] $S = \frac{A A C A F}{2 D 2 G} M1 A \text{ suitable cut chosen, indicated in any way} A1 Indicated by listing arcs cut [2]$		(vi)		B1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					For arrows on route SBCET:	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1		
(vii) Soldow through their (v) and (vi) if possible Assume blanks mean 0 [1] Soldow through their (v) and (vi) if possible Assume blanks mean 0 [1] Or arcs AC, BC, BE, DE, DG				Al		[3]
(vii) Sample Contact					(and not reversed)	
(viii) Eg cut through arcs SA , SB , SD Or arcs AC , BC , BE , DE , DG M1 A suitable cut chosen, indicated in any way A1 Indicated by listing arcs cut [2]		(vii)		B1	Follow through their (v) and (vi) if	
(viii) Eg cut through arcs SA , SB , SD Or arcs AC , BC , BE , DE , DG Assume blanks mean 0 M1 A suitable cut chosen, indicated in any way A1 Indicated by listing arcs cut [2]		(12)	A 4 C 4 F			[1]
(viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG M1 A suitable cut chosen, indicated in any way A1 Indicated by listing arcs cut [2]			4 0 2 2 2 0 4		Assume blanks mean 0	
(viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG M1 A suitable cut chosen, indicated in any way A1 Indicated by listing arcs cut [2]			S = S = S = T			
(viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG M1 A suitable cut chosen, indicated in any way A1 Indicated by listing arcs cut [2]			B			
(viii) Eg cut through arcs SA, SB, SD Or arcs AC, BC, BE, DE, DG M1 A suitable cut chosen, indicated in any way A1 Indicated by listing arcs cut [2]			2 2 2 0 2			
Or arcs AC, BC, BE, DE, DG any way A1 Indicated by listing arcs cut [2]			D $\tilde{2}$ G			
Or arcs AC, BC, BE, DE, DG any way A1 Indicated by listing arcs cut [2]		(viii)	Eg cut through arcs SA, SB, SD	M1	A suitable cut chosen, indicated in	
					any way	
Total = 18				A1		
					Tota	l = 18

PART	(a)	ANSW	/FRFD	ON	INSERT
1 / 1 / 1	(a)	~ I N D VI	1 1 1 1 1 1 1 2	() I N	111111111

7	Mark Scheme	June 2	20.7
PART (a) ANSWERED ON I	NSERT		
	king Suboptimal maximum	June 2 5, 4, 4 identified as suboptimal	
	5 5 4 B1	5, 4, 4 identified as suboptimal maxima for stage 2	
	4 4 M1	Transferring suboptimal maxima	
	5 = 8 8 8 A 1	from stage 2 to stage 1 correctly	
	A1 A1	Correct additions or totals seen for all rows in stage 1	
	1 = 8 B	8, 8, 10 identified as suboptimal	
	= 10 = 9	maxima for stage 1 (cao) Transferring suboptimal maxima	
	= 12	from stage 1 to stage 0 correctly	
	= 13 0 = 12	Correct additions or totals seen for all rows in stage 0	
	B1	13	
Length of longest path = 13 Route = $(0;0) - (1;1) - (2;2) -$	(3;0) B1	Correct route or in reverse (including (0; 0) and (3; 0))	[8]
(b)(i) D(3)		Condone directions missing Must be activity on arc	
	M1	A reasonable attempt, arcs should	
A(4) $E(4)$	J(5)	be labelled	
B(5) $F(2)$	K(4)	Any correct form	
G(4)		Condone extra dummies	
C(2) $H(6)$ L	(4)	provided precedences are not violated, accept networks with	
		multiple end vertices	
I(5)		Arc weights may be shown but are not necessary	[2]
(ii)		Follow through their network if	
45	7 8	possible	
		Values at vertices may be recorded using any consistent	
		notation	
5 5	8 9 M1	Forward pass with no more than	
	A1	one independent error	
	M ₁	Forward pass correct	
2 3	9 9	Backward pass with no more than	
		one independent error (follow	
Minimum project con	$\begin{array}{c} A1 \\ \text{ppletion time} = 13 \text{ days} \end{array}$	through their 13) Backward pass correct	
	ritical activities B, G, L B1	13 stated, cao	[6]
(iii)		B, G, L correct answer only Not follow through	
(III) • E	B1	A directed dummy from end of <i>G</i>	
F		to start of <i>K</i>	
	B1	A directed dummy from end of <i>G</i> to start of <i>L</i>	[2]
H	>	Condone extra dummies provided	[=]
		precedences are not violated Watch out for <i>K</i> following <i>I</i>	
*		waten out for K following I	l = 18

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) June 2008 Examination Series

Unit Threshold Marks

7892		Maximum Mark	Α	В	С	D	E	U
4721	Raw	72	63	55	47	39	32	0
4/21	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	49	42	35	29	0
4122	UMS	100	80	70	60	50	40	0
4723	Raw	72	55	47	40	33	26	0
4/23	UMS	100	80	70	60	50	40	0
4724	Raw	72	56	49	43	37	31	0
4724	UMS	100	80	70	60	50	40	0
4725	Raw	72	57	49	41	34	27	0
4725	UMS	100	80	70	60	50	40	0
4726	Raw	72	49	43	37	31	25	0
4720	UMS	100	80	70	60	50	40	0
4727	Raw	72	54	47	41	35	29	0
4/2/	UMS	100	80	70	60	50	40	0
4728	Raw	72	61	53	45	37	29	0
4720	UMS	100	80	70	60	50	40	0
4729	Raw	72	56	47	38	29	20	0
4123	UMS	100	80	70	60	50	40	0
4730	Raw	72	56	47	38	29	21	0
4730	UMS	100	80	70	60	50	40	0
4731	Raw	72	59	50	42	34	26	0
4/31	UMS	100	80	70	60	50	40	0
4732	Raw	72	60	52	45	38	31	0
4/32	UMS	100	80	70	60	50	40	0
4733	Raw	72	56	48	41	34	27	0
4733	UMS	100	80	70	60	50	40	0
4734	Raw	72	55	48	41	34	28	0
7/ 34	UMS	100	80	70	60	50	40	0
4735	Raw	72	56	49	42	35	28	0
7733	UMS	100	80	70	60	50	40	0
4736	Raw	72	53	46	39	32	26	0
4730	UMS	100	80	70	60	50	40	0
4737	Raw	72	61	54	47	40	34	0
7/3/	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	33.3	50.4	65.4	77.0	86.6	100	14679
3891	100	100	100	100	100	100	1
3892	57.2	76.7	88.2	94.1	97.6	100	1647
7890	45.4	67.3	82.4	92.1	97.8	100	10512
7891	33.3	66.7	100	100	100	100	6
7892	56.5	77.9	90.0	95.4	98.2	100	1660

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums_results.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 - 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

